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Abstract- In the application of neural networks to control
systems the nonlinear function, usually sigmoidal, is kept constant,
and the gain of sigmoidal function is determined by trial and error
technique. The heuristic selection of the gain, which determines
the shape, of sigmoidal function and keeping it constant may limit
the application of neural networks to complex systems involving
nonlinear dynamics. In this paper we propose a neural structure
which comprises of dynamic neural units with time-varying
sigmoidal functions. The effect of sigmoidal gain on nonlinear
dynamic systems is discussed. The leamning and adaptive
algorithm to determine the optimum sigmoidal gain, which results
in selftuning of the neuron, is derived. The effectiveness of the
proposed neural network is demonstrated through computer
simulation studies.

1. Introduction

A nonlinear activation function, usually sigmoidal,
is used in artificial neural networks to model the
intercellular current conduction mechanism in biological
neuron. It is currently understood that the biological neuron
provides two distinct operations distributed over the
synapse, the junction point between an axon and the
dendrite, and the soma, the main body of the neuron. These
two neuronal operations may be called (i) the syraptic
operation, and (ii) the somatic operation. From the
biological point of view, these two operations are physically
separate, but, in the modeling of a biological neuron, these
operations have been combined (for example, thresholding
in the soma is transferred to the synaptic operation).
Furthermore, in the biological neuron, there is a time-
varying nonlinear relationship between the pulse rate at the
synapse and the amplitude of the dendritic current [1]. This
leads to a plausible inference that the main body of the
neuron, the soma, may also be changing during neural
activities, such as learning, adaptation, and vision
perception.

However, the optimum gain of a nonlinear
activation function in artificial neural networks is
determined by trial and error technique. This heuristic
selection of the gain of sigmoidal function may limit the
application of neural networks to complex systems
involving nonlinear dynamics. Because, an improper
selection of sigmoidal gain may result in an undesirable or
even an unstable response. Recently, Yamada and Yabuta
have considered determining the optimum shape of the
sigmoidal function and have applied to linear and simple
nonlinear systems [2]. Independently, it was proposed in
[3,4] that the parameter which controls the shape, namely
the gain, of the nonlinear function can be considered as one
of the adjustable parameters of the neural structure in
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addition to the synaptic weights. This component
contributes to what is referred to as somatic adaptation.

In this paper, a three-stage neural network is
developed using a dynamic neural unit (DNU), proposed by
the authors in [5], as the basic computing element. A brief
description of the DNU is given in the next section,
followed by the learning and adaptive algorithm to modify
the parameters of DNU in Section 3. A three-stage
dynamic neural network is formed using DNU as the basic
functional node in Section 4. The effectiveness of the
proposed neural network structure is demonstrated through
computer simulation results in Section 5, followed by
conclusions in the last section.

2, The DNU: The Basic Neural Computing Element

The authors have proposed a different architecture to
model the biological neuron, named the dynamic neural
unit (DNU), whose structure is analogous to that of the
reverberating circuit in a neuronal pool of the central
nervous system [3,4]. The topology of the DNU embodies
delay elements with feedforward and feedback synaptic
weights, and a time-varying nonlinear activation function.
The DNU performs two basic operations: (i) the synaptic
operation which enables to determine the optimum synaptic
weights for dynamic operations, and (ii) the somatic
operation which determines an optimum gain of the
nonlinear function for a given task.

The dynamic structure of the DNU consists of two
delay elements and two feedforward and feedback paths
weighted by the synaptic weights ag and bfb respectively.

This is a second-order dynamic structure which can be
described by the following difference equation

vl(k) = -b1 vl(k-l) - b2 vlk-2) +a, x(k) + alx(k-l) +
32 ()

where x(k) € R" is the neural input vector, vl(k) € R1 is
the output of the dynamic structure, u(k) € R1 is the neural
output, k is the discrete-time index, and ag=[a,a, a2]
and bfb = [b1 , b2] are the vectors of adaptable feedforward

and feedback weights respectively. The vectors of signals
and adaptable weights of the dynamic neuron are defined
now as follows:
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Using (2) and (3), Eqn. (1) is rewritten as:
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The nonlinear mapping operation on vl(k) yields a neural
output u(k) given by

u(k) = ¥(g v, )] &)
where ¥[.] is some nonlinear activation function, usually a
sigmoidal function, and g is the parameter, called the

somatic gain, which controls the slope of the nonlinear
function. Any function W[.] is said to belong to the class of
sigmoidal functions, if (a) W[v(k)] is a monotonically
increasing function of v(k) in the interval (-eo, o), (b)
Y[v(k)] approaches or attains the asymptotic values 0 and 1
as v(k) approaches -0 and <o respectively, and (c) ¥[v(k)]
has one and only one inflection point [2]. Mathematically,

the sigmoidal function is: Y[v(k)] =0, and

im
) v(k)—-oo
o soe ¥IV] = 1. If the mathematical operations are to
be extended to both the positive and negative neural
outputs, thereby extending the neural activity to both the
excitatory and inhibitory inputs, the activation sigmoidal
function may be redefined as a hyperbolic tangent function
given by

YIv(k)] =tanh [g v, (K)] = tanh [v(k)]  (6)

where v = 8 vl(k). Fig. 1 shows W[.] and its derivative

¥ [.] which provides the axonal gain for different values of
slope. As mentioned above, the adjustable parameters of
the DNU are the feedforward and feedback weights, a., by
and the somatic gain g The algorithm to modify these

parameters is derived in the following section.
3. Learning and Adaptive Algorithm

The learning process involves the determination of
feedforward and feedback weights, and somatic gain which
minimize the error function in some optimal fashion. In an
iterative learning scheme, the control sequence is modified in

each learning iteration to make the neural output u(k)
approach the desired state u d(k). The components of the

parameter vector ﬂ(a b.g s) and error e(k) vary with every
b’

learning trial k. As the number of learning trials increase, the

. . * *

information set reduces to only {Q (’gsbﬂ,' g s)(k), e (®}

which indicates that the DNU parameters and the error have
converged to the optimal values (not necessarily global). To
achieve this a performance index, which has to be optimized
with respect to the parameter vector, is defined as

'= % B { ez(k;g(aft‘bfb’ g }

where E is the expectation operator. Each component of the
vector 2 is adapted to minimize J based on the
@b, 89

Y

steepest-descent algorithm which may be written as

Q('fl’bﬂ)’ “s’ck +D =Q(‘ff"ﬂ:* 890:) ¥ m(‘ﬁ"’m’ gs’(k)
®

where Q )(k + 1) is the new parameter vector,

@b, &

Q(aﬂ,b o B s)(k) is the present parameter vector, and

8Q (k) is an adaptive adjustment in the parameter
(agbg. )

vector. In the steepest-descent method, the adjustment of the

parameter vector is made proportional to the negative of the

gradient of the performance index J, that is,

al
8Q o« (- V) where V] = s
U
therefore,
. aJ .
8Q (k) = - dia[p] = - dia[u] VJ
(@agbg, gs) BQ( asb. 8 s)

&)
where dia[] is the matrix of individual adaptive gains. In the

above equation, the dia[u] and the constraint on the parameter
vector are respectively

p 0 O

a,
diaf) = O ¥, O | and
0
0 p'Bs
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where uai, i=0,1,2, and u.b_,j =1,2, are the individual gains

J
of the adaptable parameters of DNU which determine the
stability and the speed of convergence to the optimal values,
and LIl represents the norm of Q(a b )(k). Let us
e o’ B
represent the synaptic weight vector as ¢(a b.) The
" fb

gradient of performance index with respect to ¢(a b n’) is
ff

then given by:
a1 E[a[ud(k)-u(kn’]
Maghy) > L ogeby)
d¥(v)  av .
=E [-e(k) > |} (by chain rule)
{ [ av aq,(affbﬂ:)]}

=E {-e(k) [gs sech?(v, ()] s%ff_(k)]} an
1

Av(k) ov, &)
where &) = =g
s¢aﬁ,bﬂ,) 8¢( aﬁ,b ﬂ,) sa¢(aﬁb ﬂ’)

represents a vector of parameter-state (or sensitivity) signals.
The parameter-state signals for feedforward and feedback
weights are given by the relations respectively:

S0q, (=8, [¢ k-], i=0,1,2, and
1

S¢bfb.(k) =-gglv, &k-)) j=12. (12)

)

The proof of Eqn. (12) is given in [4]. Similarly, the gradient
of performance index with respect to somatic gain (slope)

- (.;i , is given by
&

¥ _1 E[alud(k)-U(k)]z]
ags 2 ags
=E{ <®@[gsecn’v@Iv,®]}.  (3)

From the above equations, the algorithm to update the DNU
parameters can be written as

oy, (e )= oy, M)+, E{e(k) g sech?lv, ()] %‘ﬁi&}

,i1=0,12, (14a)

2
gy (+1) = by, R+ 1y, E{e(k) g sech’[v, )] s""fbj(k}

,j=12,and (14b)

8,0 =g W[ 1+, B ety @Iv,0}]-9

Equations (14a) and (14b) refer to synaptic operation, while
(15) to somatic operation of the DNU. The detailed
algorithm derivation and its implementation may be found in
[41.

4., Multi-Layered Dynamic Neural Network

Multi-layered networks may be formed by simply
cascading a group of single layers, the output of one layer
provides the input to the subsequent layer. In this section, a
multi-layer dynamic neural network is developed by
considering the DNU as the basic computing node. Let the
output of a DNU be written as

(x) = ¥ [85(W(k, ag, bp )x®)] (16)

where ‘¥ [] is a sigmoidal function with varying slope - and
the terms in square brackets form an argument of ¥ [.]. A
multi-stage dynamic neural network can be formed by
cascading a group of single stage (layer) DNUs while the
output of one stage provides the input to the subsequent
stages. In this paper, the controller is configured to have a
three-stage neural network consisting of an input-stage, an

intermediate-stage and an output-stage which produces a
control output, u(k), as

u(k) = ug, (k) + uz,(k) + uz4(k) )

where uy, (k), u,,(k) and u,,(K)) are the outputs of the dynamic
neural units wC (), wG() and w33)()), respectively, and are
given by

©=¥ 6D @&y b
us, g, W &, ag by ) [u,y, K+ 1), (k) +u,ys(K))
(18a)
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u32(k)—*{{( wO a bo) [0,k u21(k)+u73<k)1}]

(18b)
(33)
u33(k)=‘l{{ &

Combining these equations and substituting into and
simplifying Eqn. (18) yields

WO, 8 b [0y 00+ 2,0 + 1y, (k)]ﬂ
(18¢)

(31 @31 (32) (32
u(k) = ‘P[{ (3)(k g D)+ 8, e
@1 (21) (22) (22)

‘P[{ & &, ag, ﬁ’)+g

a1y (12) 2
‘P[{“s W )(k' (12)

£ bbﬁ,) % w
where xs(k) is the weighted input vector and is given by

AR
X $; 8, 8] [=x".s (20)
(%) [ ]

The dynamic neural system described by the above
equations maps an n-dimensional input vector x(k) € R into

a p-dimensional neural output vector u(k) € RP. In Eqn.
(20), x and s are the vectors of input signals and the scaling
factors respectively. In Eqn. (19), the first term represents the
output stage, the middle term the intermediate stage and the
last term the input stage. For applications to the control of
unknown nonlinear dynamic systems, we have used a three-
stage dynamic neural network with each stage comprising of
two DNUs. The formulation of nonlinear control problem
and the computer simulation results are discussed in the next
section.

x (k) =

5. Computer Simulation Results

A nonlinear plant considered in this paper is of the
form: Y(k+1) = f[Y(k)r y(k'l)’"! Y(k'n+1); u(k)- ll(k'l),..., u(k'
m+1)], where [u(k), y(k)] represents the input - output pair of
a SISO plant at time k, and m < n. The block schematic of
the control scheme is shown in Fig. 2. The problem to be
addressed consists of finding a control signal u(k) that will
force the output y(k) to track asymptotically the desired

& ag,bg)+

w (kﬂ.'ﬂ))-i-

&, ag, bg) &

output y ;(k); that is, lim [yd(k) -y(k)] =0ask 5. To
achieve this objective, the following assumptions about the
nonlinear plant are made:

Assumption 1: Forany stateq € R : 0<k, SHLJ.
Assumption 2. For any k € [0, e<] the desired output y d(k) and

its n-derivatives y(l)(k), y(z)(k), - y(n)(k) are uniformly

bounded; that is, Iy(‘)(k)l sm, ,i=012,.,n.

33) 33
g, Vv

5.} ]
: ) (3 )(k . m)}]

(1 ) (13)

&, ag, bﬂ)} ]- x,®)

a9

Assumption 3: There exist coefficients 8;c and b ' such that
lt\[.] and Q[.] approximate the nonlinear functions f[.] and g[.]
respectively with an accuracy € on Q, a compact subset of R™;
that is, max If[.] - /t\[.]l <e,and
max |g[.] -2[.] | <eg, VgeonQ.

The reference (desired) signal is applied to the input
xl(k) and the plant output is fed back to the input xz(k). The
components of the scaling vector, s,, S, were set to [1, -1]
respectively.
Example 1: As mentioned above, an unknown nonlinear plant
is assumed to be governed by the difference equation y(k) =

fly(k-1), y(k-2); u(k), u(k-1),u(k-2)] with an unknown
function

[sm{n(y k-2) +0 5) }] +0 3 sin(2ruk))
1+u2@1) + u’®-2) '

which was changed atk = 250 to

11 = sin { x(y 20 ey?0c2) } +

VI{e20+ v + 22} .

561



The plant parameters were Bff =[1.2,1, 0.8], and & = (1.3,
0.9, 0.7]. The input to the system was x(k) = sin (2xk / 250)
in the interval [-1, 1). The simulation results obtained for this
case are shown in Fig. 3. In Fig. 3a are shown the error and
output responses. Figs 3b and 3¢ show the adaptation in
somatic gain (slope) g of the activation function with respect
to learning trials, k and performance index J respectively. It
can be observed from simulation results that the neural
network was able to drive the plant toward the desired
response even in the presence of changing nonlinear
characteristics. The optimum somatic gain was found to be
0.56.

Example 2: Since controllers designed based on neural
network architectures exhibit learning and adaptive
capabilities, the control law is independent of the plant
configuration. In this example is shown this adaptive
capability of the neural network by changing plant models
during the control process. The different nonlinear plant
models are well described in [6]. The changes in plant
dynamics were made as follows:

Model I, for 0 <k < 250:

[2+cos{71t(y (k-l)+y «2) }] +e?
[1+y%an+y*a2)

'\j'{u ® + v k1) +u (k-2)}|

[l+u k]

Model I, for 250 <k < 750:

gll=

= u>(k) + 0.3 sin 2mu(k-1)) + 0.1 sin (Su(k-2)),
Model IV, for 750 < k < 1050:
[2+cos{71t(y (k-l) +y2k2) }] +®
[1+v%&1)+u2ac-2)

Model I, for 1050 <k < 1500:

0.1sinx\ Iyl

[1+y2@n +y2 2]

,and

fl.l=

The system input is same as in the above example. The output
and somatic gain responses are shown in Fig. 4a and 4b
respectively. As observed from this figure that the neural
network was able to adapt very fast to the changing models of
the nonlinear plant. Figure 4c shows the system response with

a neural network having fixed sigmoidal function of gain 0.5.
This example demonstrates the effect of nonlinear function on

system response.

6. Conclusions

In this paper we have described a dynamic neural
network which determines the optimum gain of the mgmondal
function for a given task. This selftuning facilitates cxpanslon
of the application range of neural networks, for an improper
selection of sigmoidal gain may result in undesirable or even
an unstable response. The effectiveness of the proposed neural
network structure has been demonstrated through computer
simulation results.
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Fig.1: (a) Sigmoid function ‘V[.] = tanh [gva]. and

(b)

(b) The derivative sigmoid function ,'¥ [.], which tends 1o become a
sign function as the slope — o= ; that is, the slope ¥ {.] tends 10
become very narrow with an increasing value of B
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Fig. 2: The control scheme using dynamic neural network for
the controt of unknown nonlinear dynamic plants. Each
circle represents a DNU.
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Fig. 3: (a) The error and output responses, (b) the adaptation in somatic gain, 8, and (c) performance index variation with respect
to somatic gain.
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Fig. 4: (a) The error response. Circles with numbers I, I, III and IV denote the different nonlinear models
(b) the adaptation in somatic gain, g, for variations in nonlinear plant models, and
(c) The output response using a neural network having fixed sigmoidal function with gain 0.5.

563



