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Abstract- In the application of neural networks to control 
systems the nanlineer function, usually sigmoidal is kept constant, 
md the gain of sigmoidal function is &te"d by trial and mor 
technique. The heanistic selection of the gain, which &tennines 
the. shape, of sigmoidal function and keeping it constant may limit 
the application of neural networks to complex systems involving 
nonlinear dynamics. In this paper we propose a neural structure 
which comprises of dynamic neural units with time-varying 
sigmoidal functions. The effect of sigmoidal gain on nonlinear 
dynamic systems is discussed. The learning and adaptive 
algorithm to &t& the optimum sigmoidal gain. which results 
m selftuning of the neuron. is derived. The effectiveness of the 
proposed neural network is demonstrated through computer 
simulation studies. 

addition to the synaptic weights. 
contributes to what is r e f e d  to as somutic odqptation. 

This component 

In this paper, a --stage neural network is 
developed using a dynmnic neural unit @NU), propod by 
the authors in [SI, as the basic computing element. A brief 
description of the DNU is given in the next section, 
followed by the learning and adaptive algorithm to modify 
the parameters of DNU in Section 3. A three-stage 
dynamic neural network is fonnexl using DNU as the basic 
functional node in Section 4. The effectiveness of the 
proposed neural network structure is demonstrated through 
computer simulation results in Section 5, followed by 
conclusions in the last section. 

1. Introduction 
2. The DNU: The Basic Neural Computing Element 

A nonlinear activation function, usually sigmoidal, 
is used in artificial neural networks to model the 
intercellular current conduction mechanism in biological 
neuron. It is currently understood that the biological neuron 
provides two distinct operations distiibuted over the 
synupse, the junction point between an axon and the 
dendrite, and the soma, the main body of the neuron. These 
two neuronal operations may be called (i) the synaptic 
operation, and (ii) the somatic operation. From the 
biological point of view. these two operations are physically 
separate, but, in the modeling of a biological neuron, these 
operations have been combined (for example, thresholding 
in the soma is transferred to the synaptic operation). 
Furthermore, in the biological neuron, there is a time- 
varying nonlinear relationship between the pulse rate at the 
synapse and the amplitude of the dendritic current [ 13. This 
leads to a plausible inference that the main body of the 
neuron, the soma, may also be changing during neural 
activities, such as learning, adaptation. and vision 
perception. 

However, the optimum gain of a nonlinear 
activation function in artificial neural networks is 
determined by trial and error technique. This heuristic 
selection of the gain of sigmoidal function may limit the 
application of neural networks to complex systems 
involving nonlinear dynamics. Because, an improper 
selection of sigmoidal gain may result in an undesirable or 
even an unstable response. Recently. Yamada and Yabuta 
have considered determining the optimum shape of the 
sigmoidal function and have applied to linear and simple 
nonlinear systems [2]. Independently, it was proposed in 
[3,4] that the parameter which controls the shape, namely 
the gain, of the nonlinear function can be considered as one 
of the adjustable parameters of the neural structure in 
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The authors have proposed a different architecture to 
model the biological neuron, named the dynumic neural 
unit (DNU), whose. structure is analogous to that of the 
reverberating circuit in a neuronal pool of the central 
nervous system [3,4]. The topology of the DNU embodies 
delay elements with feedforward and feedback synaptic 
weights, and a time-varying nonlinear activation function. 
The DNU performs two basic operations: (i) the synuptic 
operation which enables to determine the optimum synaptic 
weights for dynamic operations, and (ii) the somatic 
operation which determines an optimum gain of the 
nonlinear function for a given task. 

The dynamic structure of the DNU consists of two 
delay elements and two feedforward and feedback paths 
weighted by the synaptic weights aff and bfi respectively. 
This is a second-order dynamic structure which can be 
described by the following difference equation 

1 where x(k) E Rn is the neural input vector, vl&) E R is 

the output of the dynamic structure, u(k) E R1 is the neural 
output, k is the discrete-time index, and aff = [ao, al. a2] 
and bfb = Ib, , b2] are the vectors of adaptable feedfomard 
and feedback weights respectively. The vectors of signals 
and adaptable weights of the dynamic neuron are defined 
now as follows: 
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2 

m 
and 

(where the superscript T denotes transpose). 

Using (2) and (3), Eqn. (1) is rewritten as: 

(4) 

The nonlinear mapping operation on vl@) yields a neural 
output u(k) given by 

where "[.I is some nonlinear activation function, usually a 
sigmoidal function, and g, is the parameter, called the 
somatic gain, which controls the slope of the nonlinear 
function. Any function Y[.] is said to belong to the class of 
sigmoidal functions, if (a) Y[v(k)] is a monotonically 
increasing function of v(k) in the interval (-W. 00) .  (b) 
Y[v(k)] approaches or attains the asymptotic values 0 and 1 
as v(k) approaches -00 and - respectively, and (c) Y[v(k)] 
has one and only one inflection point [2]. Mathematically, 

Lim 
vor)+-= the sigmoidal function is: 

~ [ v & ) l =  I. If the mathematical operations are to V ( k ) + = J  
be extended to both the positive and negative neural 
outputs, thereby extending the neural activity to both the 
excitatory and inhibitory inputs, the activation sigmoidal 
functim may be redefined as a hyperbolic tangent function 
given by 

Y[v(k)] = 0, and 

where v = g, vl(k). Fig. 1 shows Y[.] and its derivative 
I 

Y [.] which provides the axonal gain for different values of 
slope. As mentioned above, the adjustable parameters of 
the DNU are the feedforwad and feedback weights, aff bfb 
and the somatic gain g,. The algorithm to modify these 
parameters is derived in the following section. 

3. Learning and Adaptive Algorithm 

The learning process involves the determination of 
feedforward and feedback weights, and somatic gain which 
minimize the error function in some optimal fashion. In an 
iterative learning scheme, the control sequence is modified in 

each learning iteration to make the neural output U@) 
approach the desired state! ud(k). The components of the 

and error e@) vary with every parameter vector Q 

leaming trial k. As the number of leaming trials increase, thc 
b,bfb, gJ 

information set reduces to only (a* @,bfb' gJ Q, e*WN 

which indicates that the DNU parameters and the error have 
converged to the optimal values (not necessarily global). To 
achieve this a perfmance index, which has to be optimized 
with respect to the parameter vector, is defined as 

where E is the expectation operator. Each component of the 
is adapted to minimize J based on the 

steepest-descent algorithm which may be written as 

where Q (k + 1) is the new parameter vector, 

(k) is the present parameter vector, and 

(k) is an adaptive adjustment in the parameter 

vector. In the steepest&scent method, the adjustment of the 
parameter vector is made proportional to the negative of the 
gradient of the performance index J, that is, 

(afpbfb. gs) 
%fpbfb, gJ 

6n(aFbfb. 5) 

therefore, 

(9) 

where is the matrix of individual adaptive gains. In the 
above equation, the diab] and the constraint on the paramem 
vector are respectively 
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ai. j bfi. &+I) = bfij (k) + I$,. gs mh2[V10tll 4 b  
fbi 

(14b) 

where p i = 0,1,2, and p,, , j =U, are the individual gains 

of the adaptable parameters of DNU which deermine the 
stability and the speed of convergence to the Optimal values, 
and 11.11 represents the norm of n (k). Let us 

The represent the synaptic weight vector as I$ 

gradient of performance index with respect to @(a b 

J J 

, j = 1.2, and (afpbfbs 4) 
(a&& 

ff fd" 
Equations (14a) and (14b) refer to synaptic aperation, while 
(15) to somatic operation of the DNU. The detailed 
algorithm derivation and its implementation may be found in 
141. 

4. Multi-Layered Dynamic Neural Network 

Multi-layered networks may be formed by simply 
cascading a group of single layers, the output of one layer 
provides the input to the subsequent layer. In this section, a 
multi-layer dynamic neural network is developed by 
considering the DNU as the basic computing node. Let the 
output of a DNU be written as 

=E{+)[- I} (bychainrule) 

(11) 

aV %afpfJ 

'ffi 

where Y [.I is a sigmoidal function with varying slope 4, and 
writs a vector of parameter-sm (or sensitivity) sim. the terms in square brackets form an v e n t  of Y [.I. A 

weights are given by the relations respectively: cascading a group of single stage (layer) DNUs while the 
output of one stage provides the input to the subsequent 
stages. In this paper, the controller is configured to have a 
three-stage neural network consisting of an input-stage, an 
intemediate-stage and an output-stage which produces a 

The pmeer-state si@& for feedforward a d  f a b a c k  multi-stage dynamic neural network can be form4 by 

(k) = gs [x (k - i)], i = 0.1.2, and 

sob (k) = - gs [vl Or -91, j = 1.2. (12) control outpu4 U*), as 

uQ = U 3 1 0  + U32w + U 3 3 0  (17) 
&j 

The proof of Eqn. (12) is given in [4]. Similarly, the gradient 

From the above equations, the algorithm to update the DNU 
parameterscan be written as 
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Combining these equations and substituting into and 
simplifying Eqn. (1 8) yields 

Output Yd(k); that is, h [yd(L) -ye)] = 0 aS k + 0 . TO 
achieve this objective, the following assumptions about the 
nonlinear plant am made: 

Assumption 1: For any state q E R" : 0 c k, 5 Ifl.11. 
Assumption 2: For any k E [Os -1 the desired output yd@) and 

bounded; that is, Iy!)(k)l s mi , i = 0,1,2, ., n. 

its n-derivatives y(d)(k), y(,Z'(k),... yd (n) 61, are uniformly 

(19) 
Assumption 3: There exist coefficients aff and btb such that 

?[.I and ;[.I approximate the nonlinear functions a.] and g[.] 
respectively With an accuracy e on R, a compact subset of R"; 
that is, -;fl.] - ?[.]I 5 e, and 

max le[.] -g[.] I S  e, v q E on R. 

where XS@) is the weighted input vector and is given by 

's@) ={ [ [$ s2 %I}= xT. 

The dynamic neural system described by the above The reference (desired) signal is applied to the input 
equations maps an n-dimensional input vector x(k) E R" into x l Q  and the plant output is fed back to the input x$k). The 
a pdimensional neural output vector U@) E RP. In Eqn. components of the scaling vector, sl, s2, were set to [l, -11 
(20). x and s are the vectors of input signals and the scaling respectively. 
factors respectively. In Eqn. (19), the first term represents the 
output stage, the middle term the intermediate stage and the Empie 1 .. 

stage dynamic neural network with each stage comprising of function 
two DNUs. The formulation of nonlinear control problem 

section. 

above, an unknown plant last 
unknown systems* we have a three- f l~(k-1)~ y(k-2); U@), u(k-l),u(k-2)] with an unknown 

the input stage. For applidons to the control of is assumed to be governed by the difference equation y(k) 

and the computer simulation results are discussed in the next 2 [sin ( n(y (3-2) + 0.5) }] + 0.3 sin(2m(k)) 
ff.1 = A A 
-L-, 

1 + uL(k-l) + U L ( k - 2 )  5. Computer Simulation Results 

which was changed at k = 250 to 
A nonlinear plant considered in this paper is of the 

m+l)] , where [u(k). y(k)] represents the input - output pair of 
a SISO plant at time k, and m 5 n. The block schematic of 
the control scheme is shown in Fig. 2. The problem to be 

force the output y(k) to track asymptotically the desired 

form: y(k+l) = fIy(k), y(k-l),.., ye-n+l); u(k), U&-1). ..., u(k- a.] = sin ( n(y2(k-l)+y 2 (k-2))) + 

addressed consists of finding a control signal u(k) that will d q 7 a ( k - l )  + u2(k-2)) 1. 
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a neural network having fmed sigmoidal function of gain 0.5. 
The plant parameters were BH = [1.2,1,0.8], and afb = l1.3, This -Plc dem"W the effect Of nonlinear function On 

0.9,0.7]. The input to the system was xQ = sin (2.lrk / 250) system rtsponse. 
in the inmal[-l,  11. Ibt simulaticm results obtained for this 
case are shown in Fig. 3. In Fig. 3aare shown the error and 
output responses. Figs 3b and 3c show the adaptation in 
somatic gain (slope) g, of the activation function with respect 
to learning trials. k and performance in&x J respectively. It 
can be o b m e d  from simulation results that the neural of the application rangt of neural 

6. Conclusions 

In this paper we have described a dynamic neural 
network which de ' the optimum gain of the sigmoidal 

fol a selftuning facfitatts a-m 
for im- 

selection of sigmoidal gain may result in undesirable or even 
an unstable rcsponSe. Ibt effectiveness of the praposed neural 
network structure has been demonstrated through computer 
simulationresults. 

network was able to drive the plant toward the desired 
response even in the presence of changing nonlinear 
characteristics. The optimum somatic gain was found to be 
0.56. 

Example 2:Since controllers designed based on neural 
network architectures exhibit learning and adaptive 
capabilities, the control law is independent of the plant 
configuration. In this example is shown this adaptive 
capability of the neural network by changing plant models 
during the control process. The different nonlinear plant 
models are well described in [6]. The changes in plant 
dynamics were made as follows: 

Model 111, for 0 S k < 250 

[2+ux( 71~(+@-1)+y~(k-2)))] + e  -Y Q 

[ I +  Y 2 @ 4  + Y2W)1 
a.1 = 9 

l/ I ( u2(k) + u2@-1) + u2(k-2)) I 
gi.1 = 1 s  [ 1+u3k] 

Model I, for 250 5 k < 750: 

3 a.] == U (k) + 0.3 sin (2x~(k-l)) + 0.1 sin (51c~(k-2)), 

Model IV, for 750 I k < 1050 

[2+cos [ 7r(#(k-l) + y 2 (k-2)) )] + e -U*) 
fl.1 = r , 3  e - .  ,and 

11 + UL(lc-l) + uL(k-2)J 

Model 11, for 1050 5 k I 1500: 

0.1 sin IC I/ I,z@)l 
[ 1 + y2@-1) + ?@-2)l * 

a.1 = 

References 

2,0y+ 

,,o 0.6 O 2  

?, 
(a) (b) 

The system input is same as in the above example. The output 
and somatic gain responses are shown in Fig. 4a and 4b 
respectively. As observed from this figure that the neural 
network was able to adapt very fast to the changing models of 
the nonlinear plant. Figure 4c shows the system response with 

Fig.1: (a) Sigmoid function "[.I = tanh [g v I. and 
S I  

(b) The derivative sigmoid function .Y [.I. which tends to become a 
; that is, the slope Y (.] tends 10 sign function as Ihe slope --f 

become very narrow with an increasing value of g, 
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Fig. 2: Ihe control scheme using dynamic neural network for 
the control of unknown nonlinear dynamic planu. Each 
circle represents a DNU. 
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Fig. 3: (a) The error and output responses, (b) the adaptation in somatic gain, gs, and (c) performance index variation with respect 
to somatic gain. 
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Hg. 4: (a) The error response. Circles with numbers I, II, III and IV denote the different nonlinear models 
(b) the aciaptation in somatic gain, g,, for variations in nonlinear plant models, and 
(c) The output response using a neural network having fixed sigmoidal function with gain 0.5. 
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