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Abstract: Over the last decade or so, significant advances 
have been made in two distinct technological areas: fuzzy 
logic and computational neutral networks. The theory of 
fuzzy logic provides a mathematical framework to capture 
the uncertainties associated with human cognitive processes, 
such as thinking and reasoning. Also, it provides a 
mathematical morphology to emulate certain perceptual and 
linguistic attributes associated with human cognition. On the 
other hand, the computational neural network paradigms 
have evolved in the process of understanding the incredible 
learning and adaptive features of neuronal mechanisms 
inherent in certain biological species. Computational neural 
networks replicate, on a small scale, some of the 
computational operations observed in biological learning and 
adaptation. The integration of these two fields, fuzzy logic 
and neural networks; has given birth to an emerging 
technological f ie ld- the fuzzy neural networks. The fuzzy 
neural networks have the potential to capture the benefits of 
the two fascinating fields, fuzzy logic and neural networks, 
into a single capsule. The intent of this tutorial paper is to 
describe the basic notions of biological and computational 
neuronal morphologies, and to describe the principles and 
architectures of fuzzy neural networks. Towards this goal, we 
develop a fuzzy neural architecture based upon the notion of 
T-norm and T-conorm connectives. An error-based learning 
scheme is described for this neural structure. 
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1. Introduction 

1.1. Motivation 

The incredible flexibility and adaptability of 
biological neuronal control mechanisms may be 
used as a plausible source of motivation and 
framework for the design of intelligent and 
autonomous robots. Unlike most of the conven- 
tional control techniques, biological control 
mechanisms are non-model based; and such 
non-model based mechanisms are quite success- 
ful in dealing with uncertainty, complexity, 
imprecision and approximate data. For example, 
we can reach a destination with vague and 
approximate information: "to get to my office 
take a left turn after about 100 feet and then go 
straight approximately 75 feet". With this fuzzy 
information, our carbon-based computer, the 
brain, will generate motor commands and 
smoothly coordinate many degrees of freedom 
during the execution of manipulative tasks in an 
unstructured environment. Biological control 
mechanisms are usually very complex and do not 
depend upon exact mathematical formulation of 
their operations. They carry out complex tasks 
without having to develop their mathematical 
models or that of the environment, and without 
solving, in an explicit form, any integral, 
differential or any complex mathematical 
equations. 

On the other hand, to make a mobile robot 
perform the same task, reach a destination with 
vague and imprecise information, is an ex- 
tremely complex task for it involves the fusion of 
most of the existing control methodologies such 
as adaptive control, knowledge-base engineer- 
ing, fuzzy logic and computational neural 
networks. The computations required to coordi- 
nate different robot joints to produce a desired 

0165-0114/94/$07.00 (~ 1994---Elsevier Science B.V. All rights reserved 
SSDI: 0165-0114(93)E0180-Z 



M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks 

trajectory may be obtained by solving complex 
trigonometric relationships between different 
structural members of the robot. The control 
methodology developed in this traditional way 
may completely fail should the desired task or 
the environment change. 

It is our hypothesis that if the fundamental 
principles of neural computations used by 
biological control systems are understood, it 
seems most likely that an entirely a new 
generation of control methodologies can be 
developed which are more robust and intelligent, 
far beyond the capabilities of the present 
techniques based upon explicit mathematical 
modeling. 

In this process of understanding biological 
computational power, and the desire of system 
scientists to capture the power, the two most 
powerful fields in modern technology, namely 
fuzzy logic and neural networks along with 
genetic algorithms, have emerged [1]. Over the 
last decade or so, however, these two fields have 
grown independently to form distinct branches 
of science and technology, During the recent 
years, an integration of these two fields has 
presented the system designers with another 
powerful computational tool called the fuzzy 
neural networks. 

1.2. Integration o f  fuzzy  logic and neural 
networks 

Fuzzy logic provides an inference morphology 
that enables approximate human reasoning 

capabilities to be applied to knowledge-based 
systems [2, 3]. The theory of fuzzy logic provides 
a mathematical strength to capture the uncer- 
tainties associated with human cognitive proc- 
esses, such as thinking and reasoning. Also, it 
provides a mathematical morphology to emulate 
certain perceptual and linguistc attributes as- 
sociated with human cognition. 

While fuzzy theory provides an inference 
mechanism under cognitive uncertainty, com- 
putational neural networks offer exciting ad- 
vantages such as learning, adaptation, fault- 
tolerance, parallelism and generalization. The 
computational neural networks, comprising of 
processing elements called neurons, are capable 
of coping with computational complexity, non- 
linearity and uncertainty. In view of this 
versatility of neural networks, it is believed that 
they hold great potential as building blocks for a 
variety of behaviors associated with human 
cognition. 

A brief comparative study between fuzzy 
systems and neural networks in their operations 
in the context of knowledge acquisition, 
uncertainty, reasoning and adaptation is pre- 
sented in Table 1. 

To enable a system to deal with cognitive 
uncertainties in a manner more like humans, one 
may incorporate the concept of fuzzy logic into 
the neural network. Although fuzzy logic is a 
natural mechanism for modeling cognitive 
uncertainty, it may involve an increase in the 
amount of computation required (compared with 
a system using classical binary logic). This can be 

Table 1. A comparative study between fuzzy systems and neural networks 

Skills Fuzzy systems Neural networks 

Knowledge acquisition Inputs Human experts Sample sets 
Tools Interaction Algorithms 

Uncertainty Information Quantitative and Quantitative 
qualitative 

Cognition Decision making Perception 

Reasoning Mechanism Heuristic search Parallel computations 
Speed Low High 

Adaptation Fault-tolerance Low Very high 
Learning Induction Adjusting synaptic 

weights 

Natural language Implementation Explicit Implicit 
Flexibility High Low 
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readily offset by using fuzzy neural network 
approaches having the potential for parallel 
computations with high flexibility. 

A fuzzy neuron is designed to function in 
much the same way as a non-fuzzy neuron, 
except that it reflects the fuzzy nature of a 
neuron and has the ability to cope with fuzzy 
information. Inputs to the fuzzy neuron are 
fuzzy sets ( x l , x 2 , . . . , x N )  in the universe of 
discourse (X1, X 2 , . . . ,  AN) respectively. These 
fuzzy sets may be labeled by such linguistic terms 
as high, large, warm, medium, etc. The fuzzy 
inputs are then 'weighted' in synapses in a much 
different way from that used in a non-fuzzy case. 
The weighted fuzzy inputs are then aggregated 
not by the summation but by the fuzzy 
aggregation operations (fuzzy union, weighted 
mean, or intersection). 

An important difference between the com- 
putational aspects of a non-fuzzy neuron and 
that of a fuzzy neuron is the definition of 
mathematical operations. The mathematical 
operation in a non-fuzzy neuron may be defined 
in terms of confluence operation (usually, an 
inner product) between adjustable synaptic 
weights and neural inputs. Any learning and 
adaptation occurring within the neuron involves 
modifying these synaptic weights. In a fuzzy 
neuron, the synaptic connections are represented 
by a two-dimensional fuzzy relation between the 
synaptic weights and neural inputs. In this 
situation, learning involves changing the two- 
dimensional relation surface at each synapse. 

The term 'fuzzy neural network (FNN)' has 
existed for more than a decade now, however, 
the recent resurgence of interest in this area is 
motivated by the increasing recognition of the 
potential of fuzzy logic and neural networks as 
two of the most promising approaches for 
exploring the functioning of human brains. Many 
researchers are currently investigating ways and 
means of building fuzzy neural networks by 
incorporating the notion of fuzziness into a 
neural network framework [1, 4-13]. 

Yamakawa et al. [6] described a fuzzy neural 
network model and applied it successfully to a 
pattern recognition problem. Kuncicky and 
Kandel [7] proposed a fuzzy neuron model in 
which the output of one neuron is represented 
by a fuzzy level of confidence and the firing 
process in a neuron is regarded as an attempt to 

find a typical value among inputs. Kiszka and 
Gupta [8] studied a fuzzy neuron model 
described by the logic equations. However, no 
specific learning algorithms are developed in 
these three cases. Gupta and Knopf [5] proposed 
a fuzzy neuron model which is similar to the first 
two cases except that a specific modification 
scheme was proposed for weights adaptation 
during learning. Nakanishi et al. [9] and Hayashi 
et al. [10] used the non-fuzzy neural approach 
for the design of fuzzy logic controllers with 
adaptive and learning features. Similarly, Cohen 
and Hudson [4] used non-fuzzy neural network 
learning techniques to determine the weights of 
antecedents for use in fuzzy expert systems. 
However, no fuzzy neural structures were used. 

One way to incorporate fuzziness into the 
neural network is by arranging the 
integrator/transfer functions at each node to 
perform some sort of fuzzy aggregation on the 
numerical information arriving at each node 
[11]. Another way to introduce fuzziness into the 
neural network is through the input data itself, 
which may be 'fuzzified' in one of several ways. 
Gupta and Qi [12] proposed three different fuzzy 
neural models. Recently, Carpenter et al. [13] 
proposed Fuzzy ARTMAP as an extension of 
their well known Adaptive Resonance Theory 
(ART) based neural network. The Fuzzy 
ARTMAP is a synthesis of fuzzy logic and ART 
network. The neural network structure realizes a 
new min-max learning rule that minimizes 
predictive error and improves generalization. 
Furthermore, it learns each input as it is received 
on-line, rather than performing an off-line 
optimization of a certain function. The applica- 
tions of Fuzzy ARTMAP have concentrated on 
pattern classification and image recognition. 

In order to provide a motivation and some 
basic notions of 'neurons', we present a basic 
descriptive of biological neuronal morphology in 
Section 2. Following this description, we present 
some basic mathemaical operations in terms of 
synaptic and somatic operations, or, equiv- 
alently, in terms of confluence and activation 
operations of a single computational neuron in 
Section 3. This mathematical neuronal morphol- 
ogy of a single neuron is extended to fuzzy 
neuron in Section 4. A basic introduction to 
fuzzy logic, and T-norm and T-conorm connec- 
tives are also described in this section. The 
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learning scheme for a single fuzzy neuron is 
presented in Section 5, followed by conclusions 
in the last section. Hopefully, this tutorial 
presentation will help the readers to extend and 
apply these concepts to develop advanced 
notions of fuzzy neural systems for engineering 
and other decision making problems. 

2. Biological neuronal morphology 

In this section, we briefly describe the 
biological neuronal morphology (structure) 
which forms the basis for the study of 
computational neural networks. 

The basic building block of the central nervous 
system (CNS) is the neuron, the cell that 
processes and communicates information to and 
from various parts of the body. From an 
information processing point of view an in- 
dividual neuron consists of the following three 
parts each associated with a particular mathe- 
matical function (Figures 1 and 2). 

(i) the synapses are a storage area of the past 
experience (knowledge base) and receive infor- 
mation from other neurons; 

(ii) the cell body, called soma, receives 
synaptic information and performs further 
processing of information; and 

(iii) the neuron transmits information to other 
neurons through a single fiber called axon. 

The junction point of an axon with a dendrite 
is called synapse. Synapses provide long term 
memory (LTM) to the past accumulated 
experience and this is a storage for the 
knowledge base. A single biological neuron may 

be having, on the average, 10000 synaptic 
connections. 

A schematic diagram of the biological neuron 
is shown in Figure 1. From a systems theoretic 
point of view, the neuron can be considered as a 
multiple-input-single-output (MISO) system. 

Neurons are filled with and surrounded by 
fluids containing dissolved chemical ions. The 
main chemical ions are sodium (Na+), calcium 
(Ca++), potassium (K ÷) and chloride (CI-). Na + 
and K ÷ ions are largely responsible for 
generating the active neural response called an 
action potential, also called the nerve impulse. 
K ÷ ions are mainly concentrated inside the cell 
of the neuron, whereas the Na ÷ ions are 
concentrated outside the cell membrane. 

The process of generating action potential 
either in the neuron (where the processing of 
information takes place) or in the axons 
(through which the transmission of information 
takes place) is due to exchange of ions (K + and 
Na +) caused by a change in permeability of the 
cell membrane. When the nerve impulse, in the 
form of action potentials, reaches the synaptic 
junction at the end of the axon, the transmitter 
substance in the synaptic vesicles is released onto 
the dendrite of the neuron causing an electrical 
response. This electrical response can be either 
excitatory or inhibitory, depending upon the 
type of transmitter released and the nature of 
the dendrite membrane. The dendritic inputs 
originating from the inhibitory synapses tend to 
decrease this firing rate. The magnitude of the 
dendritic signal is proportional to the average 
frequency at which the pulses arrive at the 
synaptic junction. A schematic diagram of the 
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Fig. 1. A schematic view of the biological neuron. The soma of each neuron receives parallel inputs from its synapses, and 
generates a output at the soma. 
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Fig. 2. A simplified model of the signal processing characteristics of a biological neuron. 

signal coding characteristics of a biological 
neuron is shown in Figure 2. In terms of 
information processing, the synapse also per- 
forms a crude pulse frequency-to-voltage 
conversion. 

From the mathematical point of view, it may 
be concluded that the processing of information 
within a neuron involves two distinct mathemati- 
cal operations namely 

(i) the synaptic operation: The strength 
(weight) of the synapse is a representation of the 
stored knowledge. The synaptic operation 
provides a weight to the neural inputs. Thus, the 
synaptic operation assigns a relative weight 
(significance) to each incoming signal according 
to the past experience (knowledge or memory) 
stored in the synapse. 

(ii) the somatic operation: This provides ag- 
gregation, thresholding and nonlinear activation 
to the synaptic inputs. If the weighted 
aggregation of the neural inputs exceeds a 
certain threshold, soma will produce an output 
signal. 

More details of mathematical synaptic and 
somatic operations for a computational neuron 
are given in the following section. 

3. Computational neuronal morphology 

3.1. Mathematical model of  a neuron: Synaptic 
and somatic operations 

As shown in Figures 1 and 2, a biological 
neuron consists of synapses (junction points) and 

a soma- the  main body of the neuron. The 
numerous synapses which adjoin a neuron 
receive neural inputs from other neurons and 
transmit modified (weighted) versions of these 
signals to the soma via the dendrites. Each soma 
receives, on the average, 10 4 dendritic inputs. 
The role of the soma is to perform a 
spatio-temporal weighted aggregation (often a 
summation) of all these inputs. If this weighted 
aggregation is greater than an intrinsic threshold, 
then the weighted aggregation is converted into 
an action potential yielding a neural output. 
These action potentials are transmitted along the 
axon to the other neurons for further processing, 
Figure 2. 

From a signal processing point-of-view, the 
biological neuron has two key elements, synapse 
and soma, which are responsible for performing 
computational tasks such as learning, acquiring 
knowledge (storage or LTM of the past 
experience) and recognizing patterns. Each 
synapse is a storage element that contains some 
attribute of the past experience. The synapse 
learns by continuously adapting its strength 
(weight) to the new neuronal inputs. The soma 
combines the weighted inputs such that if it 
exceeds a certain threshold, then the neuron will 
fire. This axonal (output) signal undergoes a 
nonlinear transformation prior to leaving the 
axonic hillock in the soma. Mathematically, the 
synapses and early stage of the soma provide a 
confluence operation between the fresh neuronal 
inputs and stored knowledge (past experience). 
The latter part of the soma provides a nonlinear 
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bounded activation operation to the aggregated 
signals. 

In simple terms, a neuron can be depicted as 
an information processing element (PE) which 
receives an n-dimensional neural input vector, 

X(t)  = [xt(t), X2(t) . . . . .  xi(t) . . . .  , x,(t)] T ~ ~", 

(1) 

and yields a scalar neural output y(t) ~ R '. The 
input vector, X ( t ) ~  R ~, represents the signals 
being transmitted from the n-neighboring neur- 
ons (including self-feedback signal) and/or the 
outputs (measurements) from the sensory 
neurons. Mathematically, the information pro- 
cessing ability of a neuron can be represented as 
a nonlinear mapping operation, Ne, from the 
input vector X ( t ) ¢ R "  to the scalar output 
y(t) ~ ~1; that is, 

Ne:X(t) e ff~"--~ y(t) ~ R j (2) 

as depicted in Figure 3. 
Alternatively, we can write (2) as 

y(t) = Ne IX(t) ~ R"] ~ R'. (3) 

Mathematically, the neuronal nonlinear map- 
ping function Ne can be divided into two parts: 
(i) confluence and (ii) nonlinear activation 
operations. The confluence operation provides 
the weighting, aggregating and thresholding 
operations to the neural inputs. In order to 
account for the threshoiding operation, we will 
define the augmented vectors of neural inputs 
and synaptic weights as follows: 

Xa(t  ) = Ix0(/), Xl(t) . . . . .  x i ( t ) , . . . ,  x,(t)] v ~ I~ "+1, 

Xo(t) = 1, (4) 

{ ~  Neural ~ y ( t ) ~  21 
X(t) ~ ~t n Processing 

Neural inputs Element ( P E ) / N e u r a l  output 
(vector) i (scalar) 

Mapping: Ne 

Neural input space Neural output space 
Fig. 3. The information processing ability of a neuron as 
represented by the nonlinear mapping function Ne:X(t)e 

R~---+y(t) eR  I. 

and 

Wa(t) = [w0(t), Wl(t) . . . . .  

wi(t) . . . . .  w,(t)IT ~ ~ "+' (5) 

where Xo(t) = 1 and wo(t) introduces a threshold- 
ing (bias) term in the confluence operation. The 
confluence operation, ©,  essentially provides a 
measure of similarity between the augmented 
neural input vector Xa(t) (new information) and 
the augmented synaptic weight vector Wa(t) 
(accumulated knowledge-base). The nonlinear 
activation operation then performs a nonlinear 
mapping on the similarity measure. As shown in 
Figure 4, the first operation provides a linear 
mapping from X,(t)  e R" to u(t) ~ R ~ through 
the weighting vector Wa(t) e ~  n. The second 
operation provides a nonlinear mapping from 
u ( t ) e R  1 to y ( t ) e R  l through a nonlinear 
activation function ~p[.]. These two basic 
mathematical operations of a computational 
neuron will now be described in greater detail. 

3.1.1. Confluence operation: Measure of  
similarity 

From a biological perspective the confluence 
operation represents the weighting of the input 
signals,  Xa(t)  E R  n+l, with the accumulated 
knowledge stored at the synapses, W,(t), and the 
spatio-temporal aggregation of these weighted 
inputs, as performed by the soma. The synaptic 
weighting assigns a relative weight to each 
incoming signal component xi(t) according to an 
attribute of the past experience (knowledge or 
memory) stored in synaptic weight wi(t). 

One can mathematically view this confluence 
operation as a linear weighted mapping from the 
(n + 1)-dimensional neural input space Xa(t  ) E 
~n+l to the one-dimensional space u( t )~R 1. 
The synaptic (weighting) and somatic (aggrega- 
tion and thresholding) linear mapping can be 
modeled as 

u(t) = Wa(t) O X , ( t )  (6) 

where (~ is a confluence operation*. Equation 

* The confluence operation defined in (6) is a combination 
of the synaptic weighting, somatic aggregating and somatic 
thresholding operations. This linear weighted mapping yields 
a scalar output u(t) which is a measure of the similarity 
(mutual relationship) between the augmented neural input 
vector X~(t) and the knowledge stored in the augmented 
synaptic weight vector W.(t). 
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Fig. 4. Mathematical  representat ion of a generalized neuron.  The confluence operation,  (~), compares new neural information 
Xa(t) with the past experience stored in the synaptic weights W,(t), and the nonlinear  activation operation,  ap[.], provides a 

bounded neural output y(t). 

(6) represents a measure of similarity between 
X a ( t  ) (input vector) and Wa(t) (synaptic weight 
vector). We will present two types of similarity 
measures: 

(i) the scalar (inner) product of the vectors 
Xa(t) and W~(t), and 

(ii) the Euclidean distance between vectors 
Xa(t ) and Wa(t). 
The computational neurons of most neural 
networks described in the literature assume a 
confluence operation given by the scalar 
product. A popular exception to this is the radial 
basis function (RBF) network which employs the 
distance measure between W~(t) and X,(t) for 
describing the confluence between the inputs and 
weights. These two models of the confluence 
operation will now be described. 

(i) Inner Product of X a ( t  ) and W~(t). The 
inner product of Xa(t) and W,(t) is defined 
geometrically as the projection of the neural 
inputs X,(t) (new information) onto the synaptic 
weights Wa(t) (the accumulated knowledge) in 
the vector space as graphically illustrated in 
Figure 5; that is, 

u(t)Wa(t)TXa(t) = ~ wix i (7) 
i=0 

where X a ( t  ) and Wa(t) are defined in (4) and (5). 
(ii) Euclidean distance measure between X a ( t  ) 

and Wa(t). An alternative approach for measur- 
ing the similarity between the vectors Xa(t) and 
W~(t) is to use the distance measure as shown in 
Figure 6. The Euclidean distance between the 

, / l l p  x'(t) I (New neural information) 

(Accumulated 
Wa(t) knowledge in 

' the synapses) " - - " " " ' N /  

u(t) : Similarity between new information 
and past knowledge 

Fig. 5. A measure of similarity based on the projection 
(inner product) of the augmented neural vector Xa(t) onto 
the augmented synaptic weight vector W~(t). Note that if 
angle o r = 0  ° in the vector space, then u(t) becomes a 
maximum value (most similar). Conversely, if o~ = 90 °, then 
the two vectors are orthogonal  and the similarity measure is 
u(t) = 0. Thus, if Xa(t) lies in the first or the fourth quadrant  
with respect to W,(t), u(t) is an excitatory signal (positive), 
whereas if Xa(t) lies in the second or the third quadrant ,  u(t) 

is an inhibitory signal (negative). 

~ ,~ (New neural informauon) 

/ ' D : Distance between Xa(t) andWa(t) 

Ix ~ Wa(t ) 

(Accumulated knowledge 
in the synapses) 

Fig. 6. Euclidean distancc measure of similarity between the 
new neural information and the prcviously accumulated 
synaptic knowledge. Note that if D = 0 then Xa(t ) has a lot in 
common with V£d(t ), and u(t)= 1.0. Conversely, if D = 1 

then Xa(t) and W~(t) have zcro similarity yielding u(t) = O. 
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new neural information, Xa(t), and the accumu- 
lated knowledge, Wa(t), is given by 

D = fl~/[Wa(t) - Xa(t)]T[Wa(t) -- Xa(t)] E [~1 (8) 

where 13 is a normalization constant such that 
0 ~< D ~< 1. The measure of similarity between 
Xa(t ) and Wa(t) may then be defined as 

u(t) -- [1 - D]. (9) 

3.1.2. Somatic nonlinear activation function 
The somatic nonlinear activation function, 

lp[.] maps the confluence value u(t) e [-o% oo] to 
a bounded neural output. In general, the neural 
output is in the range of [0, 1] for unipolar 
signals, and [ - 1 , 1 ]  for bipolar signals. The 
nonlinear activation operator transforms the 
signal u(t) into a bounded neural output y(t) ;  
that is, 

y(t) = ~p[u(t)] (10a) 

= ~p[Wa(t)(~)Xa(t)] ~ • '. (10b) 

Many different forms of mathematical functions 
can be used to model the nonlinear activation 
function, such as linear, hard limiter, unipolar 
and bipolar sigmoidal, multimodal sigmoidal and 
radial basis operators. Some typical activation 
functions are given in Table 2. The most widely 

used is the sigmoidal function given by 

[e gx(t) -- e-gx~O] 
~p[x] = [eSX(, ) + e_g~(t) ] - tanh[x(t)] (11) 

where g is the parameter which controls the 
slope of the sigmoidal function. 

3. 2. Multi-layered neural networks 

In the preceding subsection the mathematical 
details of a single neuron were described. 
Although a single neuron can perform certain 
simple pattern detection functions, the power of 
neural computation comes from the neurons 
connected in a network structure. Larger 
networks generally offer greater computational 
capabilities. Arranging neurons in layers or 
stages is supposed to mimic the layered structure 
of a certain portion of the brain. These 
multi-layered networks have been proven to 
have capabilities beyond those of a single layer. 
The most commonly used neural network 
architecture in applications, such as pattern 
recognition, system identification and control, is 
the multi-layered neural network (MNN) with an 
error back propagation (BP) algorithm. A 
typical MNN comprises of an input layer, output 
layer, and one hidden layer of neurons is shown 

Table 2. Examples of typical nonlinear  activation operators ~p[.] 

Type Equat ion Functional form 

~ t)] 

(i) Linear ap[u(t)] = g u, ~,~ 

g > 0, activation gain 0 u(t) 

~ ~[u(t)] 

~p[u(t)] = if Igul < 1, ~- 
if g u > - 1, , ~ 1 0  u(t) 

g > O, activation gain 

-1 
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Table 2. (continued) 

Type Equation Functional form 

(iii) Hard limiter ~p[u(t)l = sgnlul 

, ~ [ u ( t ) ]  

+1 

0 u(t) 

-1 

(iv) Unipolar 
sigmoidal 

1 
~p[u(t)l 

1 + exp ( -g  u) 

g > 0, activation gain 

, ~[u(t)] 
1 -  

Y 
2 _ 

0 u(t) 

(v) Bipolar sigmoidal lPlu(t)] = tanhlg u(t)], 

g > O, activation gain 

d 
+1 

~U/[u(t)] 

Y v 
0 u(t) 

-1  

(vi) Unipolar multimode 
sigmoidal 

(vii) Radial basis 
function (RBF) 

(viii) Maximum 

I | M i i 
= -  l + - - ~ t a n h ( g ( u - w o )  ) ~p[u(t)] 2[ M i : ,  ] 

gl > O, activation gain 

~p[u(t) l = exp(u(t)) 

[ - 2,'=,, ( w , ( t )  - ~,(t)) ~] U(/) 
L 2c? J 

= ~ ,  i f x , ( t ) =  ), , ,Ax(x.(t)>, 
lp[u(t)] [0 otherwise 

n ~ [~; n = set of all possible winners 

~[u(t)]  

X 

I 
I I 
I I 

, 2 w0 ~ :~t) w 0 w 0 

[Ug[u(t)] 

o %(0 



10 M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks 

X(t) ~ • ~ ~ ~ . . . ~  Y(t) G~ m 

( t ) ~ ~  Yl(t) 
/ 

: ¥ X  : XY. 
Xn(t) ~ Ym (t) 

Input Hidden Output 
layer layer layer 

Fig. 7a. A densely interconnected three layered static neural 
network. Each shaded circle, or node, represents the neuron 
shown in Figure 4. This neural network consists an input 
layer (stage) with input vector, X(t)= [x~(t) . . . . .  
xi(t ) . . . . .  x,(t)]TeR n, and the output layer with output 
vector Y(t) = [yl(t) . . . . .  yi(t) . . . . .  y,,(t)] T c R m. Layers be- 
tween the input and output layers are normally referred to as 

hidden (intermediate) layers. 

m 
X(t) ~ 

Input layer I-lldd~n layer Output layer 

Fig. 7b. A block diagram representation of a three layered 
static neural network (MNN) with the input vector X(t) E R n 

and output vector Y(t) ~ R n. 

in Figure 7a. A simplified block diagram 
representation of the MNN is given in Figure 7b. 

The input-output  mapping of the MNN shown 
in Figure 7 can be mathematically represented 
by 

Y(t )  = N3[N2[NI[X(t) ~ •"]]] e R m. (12) 

In terms of the confluence and nonlinear 
activation operators, (12) can be rewritten as 

Y( t )  

= ~p3[W3(t) O ~PZ[W](t) (~) Wl[ W~(t) (~)Xa(t)]]] 
(13) 

where ~p/[.] is the nonlinear activation operator, 
© is the confluence operator (scalar product or 
distance measure), and WJa(t), W]( t )  and W3a(t) 
are the augmented synaptic weight vectors for 
the input, hidden and output layers, 
respectively. 

4. Fuzzy neural network architectures 

4.1. Fuzzy  logic: Basic introduction 

The concept of graded membership in fuzzy 
sets was introduced by Zadeh [14] in 1965. This 
notion of graded membership was introduced in 
order to provide a mathematical precision to 
information arising from our cognitive process. 
The theory of fuzzy sets provides a mechanism 
for representing linguistic constructs such as 
'many', 'low', 'medium',  'often',  'few'. In 
general, the fuzzy logic provides an inference 
structure that enables approximate human 
reasoning capabilities [14-19]. On the contrary, 
the traditional binary set theory describes crisp 
events, events that either do or do not occur. It 
uses probability theory to explain if an event will 
occur, measuring the chance with which a given 
event is expected to occur. The theory of fuzzy 
logic is based upon the notion of relative graded 
membership and so are the functions of 
mentation and cognitive processes. Thus, the 
utility of fuzzy sets lies in their ability to model 
uncertain or ambiguous data so often encoun- 
tered in real life. 

Fuzzy set definition. Let X be a space of points 
(or objects) with a generic element of X denoted 
by x. X is often referred to as the universe of 
discourse. A fuzzy set (class) A in X is 
characterized by a membership (characteristic) 
function IZA(t) which associates with each point 
in X a real number in the interval [0, 1], with the 
value of IZa(X) representing the 'grade of 
membership' of x in A. Thus, the nearer the 
value of #A(X) to unity, the higher the grade of 
membership of x in A. 

A fuzzy set A is a subset of the universe of 
discourse X that admits partial membership. The 
fuzzy set A is defined as an ordered pair 

a ~--- {(X, UA(X)} (14) 

where x e X  and 0 ~  < ~A(X)<~ 1. The memership 
function/~a(x) describes the degree to which the 
object x belongs to the set A.  I~A(X) is also 
referred to as the characteristic function or 
graded membership of x in A. If t t a (x)=  0 then 
it is certain that x is not in A, and I~A(X) = 1 then 
it is certain that x is in A. For x over 
0 <  Ira(X)< 1, there is an uncertainty associated 
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with x, that is, x belongs to A with the possibility 
~A(X). 

4. 2. Fuz zy  neural architectures 

Neural network structures can deal with 
imprecise data and ill-defined activities. How- 
ever, the subjective phenomena such as reason- 
ing and perceptions are often regarded beyond 
the domain of conventional neural network 
theory. It is interesting to note that fuzzy logic is 
another powerful tool for modeling uncertainties 
associated with human cognition, thinking and 
perception. In fact, the neural network approach 
fuses well with fuzzy logic [1, 4-6] and some 
research endeavors have given birth to the field 
of 'fuzzy neural networks' or 'fuzzy neural 
systems'. Padadigms based upon this integration 
are believed to have considerable potential in 
the areas of expert systems, medical diagnosis, 
control systems, pattern recognition and system 
modeling. Two possible models of fuzzy neural 
systems are schematically shown in Figures 8(a) 
and (8)b). 

The computational process envisioned for 
fuzzy-neural systems is as follows. It starts with 
the development of a 'fuzzy neuron' based on 

the understanding of biological neuronal mor- 
phologies, followed by learning mechanisms. 
This leads to the following three steps in a 
fuzzy-neural computational process: 

(i) development of fuzzy neural models 
motivated by biological neurons, 

(ii) models of synaptic connections which 
incorporates 'fuzziness' into neural network, and 

(iii) development of learning algorithms (that 
is, the method of adjusting the synaptic weights). 

Based upon the computational process in- 
volved in a fuzzy-neural system, one may 
broadly classify the fuzzy neural structures as 
feedforward (static) and feedback (dynamic), 
Figure 9. 

In a feedforward (static) architecture, the 
neuron responds instantaneously to the fuzzy 
inputs because of the absence of dynamic 
elements in the structure. The neural mathe- 
matical operations in a feedforward network can 
be performed either by fuzzy arithmetic or fuzzy 
logic operations. As was mentioned in the 
preceding section, the function of a non-fuzzy 
neuron can be modeled as 

y( t )  = ~p w,x, (15) 
L i = 0  

L i n g u i s t i c ~  

Statements L ~  

Fuzzy 

Interface 

Perception as / 
neural inputs ~ ~ . ~ i  

Neural ons 

Network / [ (Neural 

Learning 
algorithm 

Neural ~ . . . ~  Neural 

Network 

/ 

CKn°wledge'base~ 

Neural outputs ~ Fuzzy s 
Inference 

algorithm 

Fig. 8. Two models of fuzzy neural systems. (a) In response to linguistic statements, the 'fuzzy interface' block provides an input 
vector, to a multi-layered neural network. The neural network can be adapted (trained) to yield desired command outputs or 

decisions. (b) In this scheme, a multi-layered neural network drives the fuzzy inference mechanism. 
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Fuzzy - Neural Architectures 

F e e d f o r w a r d  

(Static) 

I 

Fuzzy  Logic 
operations 

Fec, dback  

(Dynamic) 

I 

Fuzzy Arithmetic Fuzzy Inference 
operations mechanism 

Dynamic Neuron 
with fuzzy inputs 

Fig. 9. Classification of  fuzzy-neural systems. 

where ]x~ . . . . .  x.] represent neural inputs 
[Wm,..., w,] the synaptic weights, y(t) the 
neural output and ~0[.] is some nonlinear 
activation function. From (15) it may be 
observed that the mathematical operations 
involved in a computational neuron are: 

(i) the scalar product between the neural 
inputs and the synaptic weights, and 

(ii) the summation of these products. 
The scalar product in (15) can be replaced by 

fuzzy multiplication and the summation opera- 
tion by fuzzy addition. Detailed descriptions of 
fuzzy arithmetic operations may be found in [3]. 
These modifications lead to a fuzzy neural 
architecture based on fuzzy arithmetic opera- 
tions. The function of such a fuzzy neuron can 
be modeled by the following equation: 

y(t)= lp[ !~=) wi(.)xi] (16) 

where ( + )  and (-) are fuzzy addition and fuzzy 
multiplication operators respectively. 

Alternatively, fuzzy logic operations, such as 
oR, ANO, SOT, or their generalized versions can 
be introduced in (15). In this paper, we confine 
our discussion to a neural architecture based 
upon fuzzy logic operations. 

The other classification, as shown in Figure 9, 
is the feedback (dynamic) architecture. The 
dynamic networks not only provide some robust 
computing characteristics but also bring about 
greater insights into biological neural structures. 
The dynamics in fuzzy neural computing does 
provide some functional basis of the cerebellum 
and its associated circuitry, and can offer great 
computational advantages over purely feedfor- 

ward architectures. Based on fuzzy inference 
mechanism, Gupta and Knopf [20] proposed a 
dynamic fuzzy-neural architecture and developed 
a Fuzzy Expert Navigator (FEN) for an 
autonomous vehicle. 

4. 3. Fuzzy-neural architecture based on fuzzy 
logic operations [1] 

If we express the neural input signals in terms 
of their membership functions each over the 
interval [0, 1], rather than in their absolute 
amplitudes, then we can write the augmented 
vector of neural inputs as 

X a ( t )  = [x0(t), X l ( t ) ,  • • • , 

Xi(t) . . . . .  xn( t )]TE [0, 1] "+l (17) 

where these neural signal (including the bias 
term, x0) are bounded by the (n + 1) dimen- 
sional hypercube [0, 1] n÷l. Similarly, the aug- 
mented synaptic weighting vector Wa(t) can be 
expressed over the unit hypercube [0, 1] n÷l. 

We perform mathematical operations on these 
signals using logical operations (connectives) 
[21, 22] such as oR, AND (or their generalized 
form based upon triangular norm of T- 
operators) and negation. 

Let us express the inputs xl and x2 over [0, 1]. 
Then we define the generalized ANn (T- 
operation) as a T mapping function: 

T:[O, 11 × [0, 1l--> [0, 1] 

given by 

y, = [xl AND XZ] & [Xl T X2] = T[xl, x2]. (18) 
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Similarly, we define the generalized oR, (T- 
conorm) as a S mapping function 

S:[0, 1] × [0, 1 ] ~  [0, 1] 

given by 

Y2 = [x~ oR x2] & [xl Sx2] = Six,, x2]. (19) 

Negation N on x~ e [0, 1] is defined as a mapping 

N:[0, [0, 11 
with the following properties 

Y3 = N[Xl] = 1 --x,. (20) 

Thus, N(0)= 1, N(1)= 0, and N(N(x))=x.  
Now, we describe some important properties 

of the T and S operators: 

T(0, 0) = 0, T(1, 1) -- 1, 
(21a) 

T(1, x) = x, T(x, y) = T(y, x), 

S(0, 0) = 0, S(1, 1) = 1, 
(21b) 

S(0, x) = x, S(x, y) = S(y, x). 

Also, De Morgan's Theorems are stated as 
follows: 

T(xl, x2) = 1 -- S ( 1 - x l ,  l - x 2 ) ,  

and 

S(x~, x2) = 1 -  T(1-x~ ,  l - x 2 ) .  (22) 

In the development of fuzzy logic based neural 
morphology, we will use the following combined 
synaptic and somatic operations: Let the 
augmented vector of neural inputs and synaptic 
weights be represented by 

X~(t) •[0, 1] n+l, and W,(t)• [0, 1] ~+t 

respectively. Then, in (6), by replacing the 
©-operation by the T-operation, and the 
Z-operation by the S-operation, we get 

u(t) = S [wi(t) tx,(t)] c [0, 1], (23a) 
i 0 

and 

y(t) = ~p[u(/) 6 [0, 1] (23b) 

where ~p[.] is a nonlinear mapping function. 

4. 3.1. Unipolar to bipolar transformation [1] 
The logical operations defined in the preced- 

ing section are unipolar signals over the positive 
unit interval [0,1]. Such logical operations 

provide only the neural state corresponding to 
the excitatory (positive) interactions. In order to 
account for both the excitatory (positive) and the 
inhibitory (negative) interactions, of the neural 
input vector, we must consider both X~(t) and its 
negated values N[Xa(t)], thus making the neural 
inputs of dimensions (2n + 2). 

Alternatively, we may express the neural 
inputs and synaptic weights as bipolar signals 
and weights over the interval [ -1 ,1]  and 
redefine the logical operations over this interval. 
We will provide a brief description of this 
transformation for unipolar [0, 1], to bipolar 
[-1,1] ,  and of the definition of logical 
operations over the interval [ -1 ,  1]. 

Let x( t)e[0,  1] be a unipolar signal. The 
corresponding bipolar signal z(t) is defined as 

z(t) = 2x(t) - 1. (24) 

The negation is defined as 

N[x] = 1 -x ( t ) ,  for unipolar signals, 

and 

N[z] = -z( t ) ,  for bipolar signals. 

The T and S operations defined in the interval 
[0, 1] can be transformed to the interval [ -1 ,  1] 
using (24). 

In Table 3, we give a summary of logical T 
and S operations for both unipolar and bipolar 
signals. We define in Table 4 some important 
logical functions and operations such as Godel's 
implication, degree of equality using Godel's 
implication, degree of equality using 
Lukasiewicz conjunction, and degree of error 
(inequality) for two bipolar signals z~ and 
z2 ~ [ - 1 ,  11. 

5. Learning scheme: Adapting the knowledge 
base 

The weighting and spatio-temporal aggrega- 
tion operations performed by the synapses and 
soma, respectively, provide a similarity measure 
between the input vector Xa(t) (new neural 
information) and the synaptic weight vector 
W,(t) (accumulated knowledge base). When a 
new input pattern that is significantly different 
from the previously learned patterns is presented 
to the neural network, the similarity between 
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Table 3. Summary of logical operations on unipolar and bipolar signals 

Unipolar signals 
x(t) ~ [0, 1] 

(i) Bipolar to unipolar transformation 

x(t) = "(z(t) + I) 

(ii) Ncgation: 
NIx(t)l =x(t) = 1 - x(t) 

(iii) Boundary conditions 
(a) T-Operator (generalized AND) 

T(0,0)=0;  T ( 1 , 1 ) = I  
T(1, x) = x; T(xl, x2) = T(x2, xj) 

(b) S-operator (generalized oR) 
s(0, 0) = 0; s o ,  1) = 1 
S(0,x) = x ;  S(x j ,x2)=S(x2 ,  xO 

(iv) Generalized De Morgan's Theorem 
T(xl, x : )=  1 -S(1  --Xl, 1 --X2) 
S(xl, x2) = 1 -T (1  - x l ,  1 -x2)  

Bipolar signals 
z(t) E [--1, 1] 

( i) Un ipo la r  to b ipo lar  t ransformat ion 
z ( t )  = 2x(t )  - l 

(ii) Negation.' 
N[z(t)] = z(t) = - z(t) 

(iii) Boundary Conditions 
(a) T-operator (generalized AND) 

T ( - 1 , - 1 ) = - I ;  T ( 1 , 1 ) = I  
T(1, z) = z; T(zl, z2) = T(z2, zl) 

(b) S-operator (generalized oR) 
S ( - l , 1 ) = - l ;  S (1 ,1 )=I  
S ( - 1 , z ) = z ;  S(z~,z2)=S(z2,  z~) 

(iv) Generalized De Morgan's Theorem 
T(z,, z2) = - S ( - z , ,  -z2) 
S(zt, z2) = - T ( - z , ,  -z2) 

Table 4. Summary of some important logical functions and operations (these logical functions and operations can be 
defined on both the unipolar, [0, 1] and bipolar [ -1,  1], signals, but here, we will consider the bipolar signals) 

(a) Godel's implication (~): Godel's implication [z, (~z2] (read as, z, implies zz) is defined as 

2, Z l ~ Z 2 ,  

(b) Degree of equality (using Godel's implication) r/(zl, z2). Given z I and z 2 over [ -1,  1], to what degree they are equal is 
defined as 

r/(z,, z2) = ½[{z, (~)z2}Tiz2 {~)z,} + {-~t (~)£2T{z72 (~)£,}] ~ [-1,  1] 

where £ = -z .  

(c) Degree of equality (using Lukasiewicz's conjunction): ~l(z~, z2). Again, given zl and z~ over [ -1 ,  1], to what degree 
they are equal is defined as 

rl(z,, z2) = 11 -Iz,z21l e [ -1 ,  11. 

(d) Degree of inequality (degree of error): E(Zl, z2) e [-1,  1]. Given zl and z2 over [ -1,  1], in order to find the degree of 
difference or degree of inequality, we define E[z,, z2] as the negation on the degree of equality; that is, 

e lz , ,  z~] = Nln(z, ,  z~)] = - , K z , ,  z2). 

Thus, the degree of error, using Lukasiewicz conjunction can be defined as 

E(z,, z2) = Iz, - z21 - 1. 

this input and the existing knowledge base is 
small. As the neural network learns this new 
pattern, by changing the strength of the synaptic 
weights, the distance between the new informa- 
tion and accumulated knowledge decreases. In 
other words, the purpose of learning is to make 
W~(t) very similar to a given pattern Xa(t ). 

Most of the neural network structures undergo 

a 'learning' procedure during which the synaptic 
weights (connection strengths) are adapted. 
Algorithms for varying these connection stren- 
gths such that learning ensues are called 
'learning rules'. The objective of learning rules 
depends upon the applications. For example, the 
objective in pattern classification from sample 
data is to classify and predict successfully on new 
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Neural Learning Algorithms 

I 

Error-based learning 

Error-correction Stochastic 

Least-mean Back propagation 
square 

Output-based learning 

Hebbian Competitive 

Fig. 10. A flow diagram of learning algorithms employed in different neural structures to adapt the synaptic weights. 

data, while the objective in control applications 
is to approximate nonlinear functions, and/or to 
make unknown systems follow the desired 
response. In classification and functional ap- 
proximation problems, each cycle of presenta- 
tion of all cases is usually referred to as a 
'learning epoch'. However, there has been no 
generalization as to how a neural network can be 
adapted. A flow diagram illustrating the different 
learning algorithms normally employed for the 
adaptation of synaptic weights is shown in Figure 
10. As shown in this figure, learning algorithms 
may be broadly categorized as 'error-based 
(supervised)' and 'output-based (unsupervised)'. 

Error-based (also known as supervised) 
learning algorithms employ an external reference 
signal (teacher) and generate an error signal by 
comparing the reference with the obtained 
response. Based on error signal, neural network 
modifies its synaptic connections to improve the 
system performance. In this learning scheme, it 
is assumed that the desired answer is known 
apriori. The error-based learning procedure is 
schematically shown in Figure 11. 

A general equation for the error-based 
learning algorithm is 

wi(t + 1) = wi(t) + Awi(t) (25a) 

where 

A w i ( t  ) = lZiXi(t)[yd(t) -- y(/)] (25b) 

and wi(t) is the synaptic weight corresponding to 
the input xi(t). The parameter Awe(t) is the 
change in synaptic connection wi(t) over an 
instant in time,/~,- is the learning rate, ya(t) is the 

Adaptive weights AWa(t) Desired output 
Yd (t) 

Xa(t) e ~n+l . + 

Neural 

Fig. 11. An error-based (supervised) learning scheme where 
the learning process is guided by the error signal e(t). 

desired neural output, and y(t) is the actual 
neural response. The proper selection of/u is of 
critical importance in these learning rules. A 
very small value of /~i will result in extremely 
slow learning. On the other hand, a large value 
of/~i will make learning faster, but it may also 
result in oscillations or make the system 
unstable. 

In contrast, output-based learning algorithms 
do not incorporate a reference signal, and 
generally involve self-organization principles that 
rely only upon local information and internal 
control mechanisms in order to discover 
emergent collective properties. The two most 
important forms of output-based learning are 
Hebbian learning and competitive learning. 
Hebbian learning [23, 24], Figure 12, involves 
the adjustment of a synaptic weight according to 
the correlation of the response of the two 
neurons that adjoin it. A simple Hebbian 
learning rule used to describe the correlation of 
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,(t) • ~ 1 

Neural 
output 

Adaptive weigMs 
AWa(t ) = I~ X a(t) y(t) 

/ 

Xa(t)e ~ I - I ~ _ .  z..]u(t)l~l .. . . . . .  [ " ~ .  

¢ -  

Fig. 12. An output-based (unsupervised) learning scheme, 
often called Hebbian learning, is guided by the neural output 
rather than by the output error as in error-based (supervised) 

learning scheme. 

the input xi(t) with the neuron output y(t) is 

AWl(t) = I~i xi(l ) y(t) (26) 

where Aw/(t) represents the temporal change of 
the synaptic weight wi(t) and /u; is the learning 
rate. 

We can extend these basic learning rules to a 
fuzzy neuron. Figure 13 shows an error-based 
learning scheme for a fuzzy neuron with bipolar 
signals and synaptic weights. The augmented 
neural input signals Xa(t) are defined over the 

unit hypercube [0, 1] n+l. Using the transforma- 
tion given in (24), we transform the unipolar 
neural inputs Xa(t) into bipolar signals Za(t) 
[--1, 1] n+t. 

The logical operation of this neuron is 
summarized as follows: 

u(t) = S [wi(t) T zi(t)] (27a) 
i = 0  

which is equivalent to 

u(t) = WVa(t) ANa Z,(t)  ~ [-1,  1] (27b) 

(a logical scalar product operation), where wo(t) 
and zo(t) correspond to the bias terms and zo = 1. 
The neural output is defined as 

y(t) = qp[u(t)] ~ [-1,  1] (2ga) 

where ~p[.] is defined as 

~p[u(t)] = lu(t)[ 8- sgn[u(t)], g > 0 (28b) 

where the parameter g is the somatic gain which 
controls the slope of the activation (sigmoidal) 
function. Let us define an error signal with 
respect to the desired neural output, yd(t)~ [-- 
1, 1], as e ( t ) = y d ( t ) - y ( t ) e  [--1, 1]. The objec- 
tive of learning and adaptation in neural 
networks is to adapt the parameters of the 
neural structures, in this case Wa(t) and g in 
(21a) and (21b), in order to minimize an error 
function. The learning rules to modify Wa(t) and 

z,t,  I 

I *x_o 0 \ I 
lipolar ( 

I ' -  - J 

z ( o  . - .  

¢ L ~  e(t)e l-l,11 

Wa (t+l) ~ A  Wa(t) .~, ~ _ = . ~ A  g(t) 

_ ~  Wa(t) g(t+l) _ ~ ~  g(t) 

'~% Learning scheme with 
fuzzy connectives 

Fig. 13. Implementation of the learning scheme, Equations (29) and (30), to modify the synaptic weights, H~ d, and the somatic 
gain, g, of a fuzzy neuron. 
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g(t) may be developed as follows: 

Wa(t + 1) = Wa(t) Og AWa(t) = S[W~(t), AWa(t)], 

(29a) 

and 

g(t + 1) =g( l )  oR Ag(l) = S[g(t), 6g(t)] (29b) 

where 

AWa(I) = Za(/) A N D  e(t) = T[Za(/), e(l)], (30a) 

and 

Ag(t) = u(t) ANn e(t) = T[u(l), e(l)]. (30b) 

The above description provides a learning 
scheme to update the neural weights of a fuzzy 
neuron. It represents one particular model of a 
fuzzy neural architecture. It is postulated that 
the fuzzy neural networks can learn by 
experience if their synaptic connections are 
interpreted as fuzzy relations between the 
external inputs and the dendritic inputs. 
Complex decisions may be derived from a 
shallow hierarchy of fuzzy neurons and their 
related network architectures with electronic 
circuitry. 

these neuronal operations, we developed the 
learning algorithms as discussed in Section 5 for 
both error-based and output-based learning. 
With the development of fuzzy neural networks, 
it is envisaged that learning schemes for 
autonomous vehicles will have the following 
features: 

(i) easy to implement fuzzy natural lan- 
guages so that the structure of knowledge is very 
clear and efficient, 

(ii) any changes in the task and environment 
can be easily taken care of by adapting the 
neural weights, and 

(iii) since a fuzzy system is one kind of 
interpolation [25], drastic reduction of data and 
software/hardware overheads can be achieved. 

However, it should be noted that more 
research endeavors are necessary to develop 
general topology of fuzzy neural models, 
learning algorithms, and approximation theory 
so that these models are made applicable in 
system modeling and control of complex 
systems. The area of fuzzy neural networks is 
still in its infancy, and is a very fertile area of 
theoretical and applied research. 
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