
Fuzzy Sets and Systems 61 (1994) 1-18 1
North-Holland

Invited Review

On the principles of fuzzy neural networks

M.M. Gupta and D.H. Rao
Intelligent Systems Research Laboratory, College of
Engineering, University of Saskatchewan, Saskatoon,
Canada, S7N OWO

Received August 1993
Revised September 1993

Abstract: Over the last decade or so, significant advances
have been made in two distinct technological areas: fuzzy
logic and computational neutral networks. The theory of
fuzzy logic provides a mathematical framework to capture
the uncertainties associated with human cognitive processes,
such as thinking and reasoning. Also, it provides a
mathematical morphology to emulate certain perceptual and
linguistic attributes associated with human cognition. On the
other hand, the computational neural network paradigms
have evolved in the process of understanding the incredible
learning and adaptive features of neuronal mechanisms
inherent in certain biological species. Computational neural
networks replicate, on a small scale, some of the
computational operations observed in biological learning and
adaptation. The integration of these two fields, fuzzy logic
and neural networks; has given birth to an emerging
technological f ie ld- the fuzzy neural networks. The fuzzy
neural networks have the potential to capture the benefits of
the two fascinating fields, fuzzy logic and neural networks,
into a single capsule. The intent of this tutorial paper is to
describe the basic notions of biological and computational
neuronal morphologies, and to describe the principles and
architectures of fuzzy neural networks. Towards this goal, we
develop a fuzzy neural architecture based upon the notion of
T-norm and T-conorm connectives. An error-based learning
scheme is described for this neural structure.

Keywords: Fuzzy logic; neural networks; fuzzy neural
networks; confluence operation; synpatic and somatic
operations.

Correspondence to: Dr. M.M. Gupta, Intelligent Systems
Research Laboratory, College of Engineering, University of
Saskatchewan, Saskatoon, Canada, S7N 0W0. E-mail:
guptam@sask.usask.ca

1. Introduction

1.1. Motivation

The incredible flexibility and adaptability of
biological neuronal control mechanisms may be
used as a plausible source of motivation and
framework for the design of intelligent and
autonomous robots. Unlike most of the conven-
tional control techniques, biological control
mechanisms are non-model based; and such
non-model based mechanisms are quite success-
ful in dealing with uncertainty, complexity,
imprecision and approximate data. For example,
we can reach a destination with vague and
approximate information: "to get to my office
take a left turn after about 100 feet and then go
straight approximately 75 feet". With this fuzzy
information, our carbon-based computer, the
brain, will generate motor commands and
smoothly coordinate many degrees of freedom
during the execution of manipulative tasks in an
unstructured environment. Biological control
mechanisms are usually very complex and do not
depend upon exact mathematical formulation of
their operations. They carry out complex tasks
without having to develop their mathematical
models or that of the environment, and without
solving, in an explicit form, any integral,
differential or any complex mathematical
equations.

On the other hand, to make a mobile robot
perform the same task, reach a destination with
vague and imprecise information, is an ex-
tremely complex task for it involves the fusion of
most of the existing control methodologies such
as adaptive control, knowledge-base engineer-
ing, fuzzy logic and computational neural
networks. The computations required to coordi-
nate different robot joints to produce a desired

0165-0114/94/$07.00 (~ 1994---Elsevier Science B.V. All rights reserved
SSDI: 0165-0114(93)E0180-Z

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

trajectory may be obtained by solving complex
trigonometric relationships between different
structural members of the robot. The control
methodology developed in this traditional way
may completely fail should the desired task or
the environment change.

It is our hypothesis that if the fundamental
principles of neural computations used by
biological control systems are understood, it
seems most likely that an entirely a new
generation of control methodologies can be
developed which are more robust and intelligent,
far beyond the capabilities of the present
techniques based upon explicit mathematical
modeling.

In this process of understanding biological
computational power, and the desire of system
scientists to capture the power, the two most
powerful fields in modern technology, namely
fuzzy logic and neural networks along with
genetic algorithms, have emerged [1]. Over the
last decade or so, however, these two fields have
grown independently to form distinct branches
of science and technology, During the recent
years, an integration of these two fields has
presented the system designers with another
powerful computational tool called the fuzzy
neural networks.

1.2. Integration o f fuzzy logic and neural
networks

Fuzzy logic provides an inference morphology
that enables approximate human reasoning

capabilities to be applied to knowledge-based
systems [2, 3]. The theory of fuzzy logic provides
a mathematical strength to capture the uncer-
tainties associated with human cognitive proc-
esses, such as thinking and reasoning. Also, it
provides a mathematical morphology to emulate
certain perceptual and linguistc attributes as-
sociated with human cognition.

While fuzzy theory provides an inference
mechanism under cognitive uncertainty, com-
putational neural networks offer exciting ad-
vantages such as learning, adaptation, fault-
tolerance, parallelism and generalization. The
computational neural networks, comprising of
processing elements called neurons, are capable
of coping with computational complexity, non-
linearity and uncertainty. In view of this
versatility of neural networks, it is believed that
they hold great potential as building blocks for a
variety of behaviors associated with human
cognition.

A brief comparative study between fuzzy
systems and neural networks in their operations
in the context of knowledge acquisition,
uncertainty, reasoning and adaptation is pre-
sented in Table 1.

To enable a system to deal with cognitive
uncertainties in a manner more like humans, one
may incorporate the concept of fuzzy logic into
the neural network. Although fuzzy logic is a
natural mechanism for modeling cognitive
uncertainty, it may involve an increase in the
amount of computation required (compared with
a system using classical binary logic). This can be

Table 1. A comparative study between fuzzy systems and neural networks

Skills Fuzzy systems Neural networks

Knowledge acquisition Inputs Human experts Sample sets
Tools Interaction Algorithms

Uncertainty Information Quantitative and Quantitative
qualitative

Cognition Decision making Perception

Reasoning Mechanism Heuristic search Parallel computations
Speed Low High

Adaptation Fault-tolerance Low Very high
Learning Induction Adjusting synaptic

weights

Natural language Implementation Explicit Implicit
Flexibility High Low

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

readily offset by using fuzzy neural network
approaches having the potential for parallel
computations with high flexibility.

A fuzzy neuron is designed to function in
much the same way as a non-fuzzy neuron,
except that it reflects the fuzzy nature of a
neuron and has the ability to cope with fuzzy
information. Inputs to the fuzzy neuron are
fuzzy sets (x l , x 2 , . . . , x N) in the universe of
discourse (X1, X 2 , . . . , AN) respectively. These
fuzzy sets may be labeled by such linguistic terms
as high, large, warm, medium, etc. The fuzzy
inputs are then 'weighted' in synapses in a much
different way from that used in a non-fuzzy case.
The weighted fuzzy inputs are then aggregated
not by the summation but by the fuzzy
aggregation operations (fuzzy union, weighted
mean, or intersection).

An important difference between the com-
putational aspects of a non-fuzzy neuron and
that of a fuzzy neuron is the definition of
mathematical operations. The mathematical
operation in a non-fuzzy neuron may be defined
in terms of confluence operation (usually, an
inner product) between adjustable synaptic
weights and neural inputs. Any learning and
adaptation occurring within the neuron involves
modifying these synaptic weights. In a fuzzy
neuron, the synaptic connections are represented
by a two-dimensional fuzzy relation between the
synaptic weights and neural inputs. In this
situation, learning involves changing the two-
dimensional relation surface at each synapse.

The term 'fuzzy neural network (FNN)' has
existed for more than a decade now, however,
the recent resurgence of interest in this area is
motivated by the increasing recognition of the
potential of fuzzy logic and neural networks as
two of the most promising approaches for
exploring the functioning of human brains. Many
researchers are currently investigating ways and
means of building fuzzy neural networks by
incorporating the notion of fuzziness into a
neural network framework [1, 4-13].

Yamakawa et al. [6] described a fuzzy neural
network model and applied it successfully to a
pattern recognition problem. Kuncicky and
Kandel [7] proposed a fuzzy neuron model in
which the output of one neuron is represented
by a fuzzy level of confidence and the firing
process in a neuron is regarded as an attempt to

find a typical value among inputs. Kiszka and
Gupta [8] studied a fuzzy neuron model
described by the logic equations. However, no
specific learning algorithms are developed in
these three cases. Gupta and Knopf [5] proposed
a fuzzy neuron model which is similar to the first
two cases except that a specific modification
scheme was proposed for weights adaptation
during learning. Nakanishi et al. [9] and Hayashi
et al. [10] used the non-fuzzy neural approach
for the design of fuzzy logic controllers with
adaptive and learning features. Similarly, Cohen
and Hudson [4] used non-fuzzy neural network
learning techniques to determine the weights of
antecedents for use in fuzzy expert systems.
However, no fuzzy neural structures were used.

One way to incorporate fuzziness into the
neural network is by arranging the
integrator/transfer functions at each node to
perform some sort of fuzzy aggregation on the
numerical information arriving at each node
[11]. Another way to introduce fuzziness into the
neural network is through the input data itself,
which may be 'fuzzified' in one of several ways.
Gupta and Qi [12] proposed three different fuzzy
neural models. Recently, Carpenter et al. [13]
proposed Fuzzy ARTMAP as an extension of
their well known Adaptive Resonance Theory
(ART) based neural network. The Fuzzy
ARTMAP is a synthesis of fuzzy logic and ART
network. The neural network structure realizes a
new min-max learning rule that minimizes
predictive error and improves generalization.
Furthermore, it learns each input as it is received
on-line, rather than performing an off-line
optimization of a certain function. The applica-
tions of Fuzzy ARTMAP have concentrated on
pattern classification and image recognition.

In order to provide a motivation and some
basic notions of 'neurons', we present a basic
descriptive of biological neuronal morphology in
Section 2. Following this description, we present
some basic mathemaical operations in terms of
synaptic and somatic operations, or, equiv-
alently, in terms of confluence and activation
operations of a single computational neuron in
Section 3. This mathematical neuronal morphol-
ogy of a single neuron is extended to fuzzy
neuron in Section 4. A basic introduction to
fuzzy logic, and T-norm and T-conorm connec-
tives are also described in this section. The

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

learning scheme for a single fuzzy neuron is
presented in Section 5, followed by conclusions
in the last section. Hopefully, this tutorial
presentation will help the readers to extend and
apply these concepts to develop advanced
notions of fuzzy neural systems for engineering
and other decision making problems.

2. Biological neuronal morphology

In this section, we briefly describe the
biological neuronal morphology (structure)
which forms the basis for the study of
computational neural networks.

The basic building block of the central nervous
system (CNS) is the neuron, the cell that
processes and communicates information to and
from various parts of the body. From an
information processing point of view an in-
dividual neuron consists of the following three
parts each associated with a particular mathe-
matical function (Figures 1 and 2).

(i) the synapses are a storage area of the past
experience (knowledge base) and receive infor-
mation from other neurons;

(ii) the cell body, called soma, receives
synaptic information and performs further
processing of information; and

(iii) the neuron transmits information to other
neurons through a single fiber called axon.

The junction point of an axon with a dendrite
is called synapse. Synapses provide long term
memory (LTM) to the past accumulated
experience and this is a storage for the
knowledge base. A single biological neuron may

be having, on the average, 10000 synaptic
connections.

A schematic diagram of the biological neuron
is shown in Figure 1. From a systems theoretic
point of view, the neuron can be considered as a
multiple-input-single-output (MISO) system.

Neurons are filled with and surrounded by
fluids containing dissolved chemical ions. The
main chemical ions are sodium (Na+), calcium
(Ca++), potassium (K ÷) and chloride (CI-). Na +
and K ÷ ions are largely responsible for
generating the active neural response called an
action potential, also called the nerve impulse.
K ÷ ions are mainly concentrated inside the cell
of the neuron, whereas the Na ÷ ions are
concentrated outside the cell membrane.

The process of generating action potential
either in the neuron (where the processing of
information takes place) or in the axons
(through which the transmission of information
takes place) is due to exchange of ions (K + and
Na +) caused by a change in permeability of the
cell membrane. When the nerve impulse, in the
form of action potentials, reaches the synaptic
junction at the end of the axon, the transmitter
substance in the synaptic vesicles is released onto
the dendrite of the neuron causing an electrical
response. This electrical response can be either
excitatory or inhibitory, depending upon the
type of transmitter released and the nature of
the dendrite membrane. The dendritic inputs
originating from the inhibitory synapses tend to
decrease this firing rate. The magnitude of the
dendritic signal is proportional to the average
frequency at which the pulses arrive at the
synaptic junction. A schematic diagram of the

Inputs
other nq

c~
from sc

Dcmmtes o v a a u a

It
nches

Fig. 1. A schematic view of the biological neuron. The soma of each neuron receives parallel inputs from its synapses, and
generates a output at the soma.

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks 5

L ~ ~ I ~ ~ (n°ctinl~°ne~t°n~ al~f)n:

Neural inputs Synapses
(memory and frequency-to-voltage conversion)

Fig. 2. A simplified model of the signal processing characteristics of a biological neuron.

signal coding characteristics of a biological
neuron is shown in Figure 2. In terms of
information processing, the synapse also per-
forms a crude pulse frequency-to-voltage
conversion.

From the mathematical point of view, it may
be concluded that the processing of information
within a neuron involves two distinct mathemati-
cal operations namely

(i) the synaptic operation: The strength
(weight) of the synapse is a representation of the
stored knowledge. The synaptic operation
provides a weight to the neural inputs. Thus, the
synaptic operation assigns a relative weight
(significance) to each incoming signal according
to the past experience (knowledge or memory)
stored in the synapse.

(ii) the somatic operation: This provides ag-
gregation, thresholding and nonlinear activation
to the synaptic inputs. If the weighted
aggregation of the neural inputs exceeds a
certain threshold, soma will produce an output
signal.

More details of mathematical synaptic and
somatic operations for a computational neuron
are given in the following section.

3. Computational neuronal morphology

3.1. Mathematical model of a neuron: Synaptic
and somatic operations

As shown in Figures 1 and 2, a biological
neuron consists of synapses (junction points) and

a soma- the main body of the neuron. The
numerous synapses which adjoin a neuron
receive neural inputs from other neurons and
transmit modified (weighted) versions of these
signals to the soma via the dendrites. Each soma
receives, on the average, 10 4 dendritic inputs.
The role of the soma is to perform a
spatio-temporal weighted aggregation (often a
summation) of all these inputs. If this weighted
aggregation is greater than an intrinsic threshold,
then the weighted aggregation is converted into
an action potential yielding a neural output.
These action potentials are transmitted along the
axon to the other neurons for further processing,
Figure 2.

From a signal processing point-of-view, the
biological neuron has two key elements, synapse
and soma, which are responsible for performing
computational tasks such as learning, acquiring
knowledge (storage or LTM of the past
experience) and recognizing patterns. Each
synapse is a storage element that contains some
attribute of the past experience. The synapse
learns by continuously adapting its strength
(weight) to the new neuronal inputs. The soma
combines the weighted inputs such that if it
exceeds a certain threshold, then the neuron will
fire. This axonal (output) signal undergoes a
nonlinear transformation prior to leaving the
axonic hillock in the soma. Mathematically, the
synapses and early stage of the soma provide a
confluence operation between the fresh neuronal
inputs and stored knowledge (past experience).
The latter part of the soma provides a nonlinear

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

bounded activation operation to the aggregated
signals.

In simple terms, a neuron can be depicted as
an information processing element (PE) which
receives an n-dimensional neural input vector,

X(t) = [xt(t), X2(t) xi(t) , x,(t)] T ~ ~",

(1)

and yields a scalar neural output y(t) ~ R '. The
input vector, X (t) ~ R ~, represents the signals
being transmitted from the n-neighboring neur-
ons (including self-feedback signal) and/or the
outputs (measurements) from the sensory
neurons. Mathematically, the information pro-
cessing ability of a neuron can be represented as
a nonlinear mapping operation, Ne, from the
input vector X (t) ¢ R " to the scalar output
y(t) ~ ~1; that is,

Ne:X(t) e ff~"--~ y(t) ~ R j (2)

as depicted in Figure 3.
Alternatively, we can write (2) as

y(t) = Ne IX(t) ~ R"] ~ R'. (3)

Mathematically, the neuronal nonlinear map-
ping function Ne can be divided into two parts:
(i) confluence and (ii) nonlinear activation
operations. The confluence operation provides
the weighting, aggregating and thresholding
operations to the neural inputs. In order to
account for the threshoiding operation, we will
define the augmented vectors of neural inputs
and synaptic weights as follows:

Xa(t) = Ix0(/), Xl(t) x i (t) , . . . , x,(t)] v ~ I~ "+1,

Xo(t) = 1, (4)

{ ~ Neural ~ y (t) ~ 21
X(t) ~ ~t n Processing

Neural inputs Element (P E) / N e u r a l output
(vector) i (scalar)

Mapping: Ne

Neural input space Neural output space
Fig. 3. The information processing ability of a neuron as
represented by the nonlinear mapping function Ne:X(t)e

R~---+y(t) eR I.

and

Wa(t) = [w0(t), Wl(t)

wi(t) w,(t)IT ~ ~ "+' (5)

where Xo(t) = 1 and wo(t) introduces a threshold-
ing (bias) term in the confluence operation. The
confluence operation, ©, essentially provides a
measure of similarity between the augmented
neural input vector Xa(t) (new information) and
the augmented synaptic weight vector Wa(t)
(accumulated knowledge-base). The nonlinear
activation operation then performs a nonlinear
mapping on the similarity measure. As shown in
Figure 4, the first operation provides a linear
mapping from X,(t) e R" to u(t) ~ R ~ through
the weighting vector Wa(t) e ~ n. The second
operation provides a nonlinear mapping from
u (t) e R 1 to y (t) e R l through a nonlinear
activation function ~p[.]. These two basic
mathematical operations of a computational
neuron will now be described in greater detail.

3.1.1. Confluence operation: Measure of
similarity

From a biological perspective the confluence
operation represents the weighting of the input
signals, Xa(t) E R n+l, with the accumulated
knowledge stored at the synapses, W,(t), and the
spatio-temporal aggregation of these weighted
inputs, as performed by the soma. The synaptic
weighting assigns a relative weight to each
incoming signal component xi(t) according to an
attribute of the past experience (knowledge or
memory) stored in synaptic weight wi(t).

One can mathematically view this confluence
operation as a linear weighted mapping from the
(n + 1)-dimensional neural input space Xa(t) E
~n+l to the one-dimensional space u(t)~R 1.
The synaptic (weighting) and somatic (aggrega-
tion and thresholding) linear mapping can be
modeled as

u(t) = Wa(t) O X , (t) (6)

where (~ is a confluence operation*. Equation

* The confluence operation defined in (6) is a combination
of the synaptic weighting, somatic aggregating and somatic
thresholding operations. This linear weighted mapping yields
a scalar output u(t) which is a measure of the similarity
(mutual relationship) between the augmented neural input
vector X~(t) and the knowledge stored in the augmented
synaptic weight vector W.(t).

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

x(

-x l(t -

~ x i(t)

I I

X(t) ~

Neural
inputs

Confluence operation (Similarity measLL,~) .._ I
v I

~ . M¢ Neuron

- - i z (t) - u(t) y(t) e

.,,,,,,,,~. Dendritic~ I Nonlinear activation// neoUrual ut
°~'v-"~ in uts I operation tp operalaon P ~ i o n / /

Fig. 4. Mathematical representat ion of a generalized neuron. The confluence operation, (~), compares new neural information
Xa(t) with the past experience stored in the synaptic weights W,(t), and the nonlinear activation operation, ap[.], provides a

bounded neural output y(t).

(6) represents a measure of similarity between
X a (t) (input vector) and Wa(t) (synaptic weight
vector). We will present two types of similarity
measures:

(i) the scalar (inner) product of the vectors
Xa(t) and W~(t), and

(ii) the Euclidean distance between vectors
Xa(t) and Wa(t).
The computational neurons of most neural
networks described in the literature assume a
confluence operation given by the scalar
product. A popular exception to this is the radial
basis function (RBF) network which employs the
distance measure between W~(t) and X,(t) for
describing the confluence between the inputs and
weights. These two models of the confluence
operation will now be described.

(i) Inner Product of X a (t) and W~(t). The
inner product of Xa(t) and W,(t) is defined
geometrically as the projection of the neural
inputs X,(t) (new information) onto the synaptic
weights Wa(t) (the accumulated knowledge) in
the vector space as graphically illustrated in
Figure 5; that is,

u(t)Wa(t)TXa(t) = ~ wix i (7)
i=0

where X a (t) and Wa(t) are defined in (4) and (5).
(ii) Euclidean distance measure between X a (t)

and Wa(t). An alternative approach for measur-
ing the similarity between the vectors Xa(t) and
W~(t) is to use the distance measure as shown in
Figure 6. The Euclidean distance between the

, / l l p x'(t) I (New neural information)

(Accumulated
Wa(t) knowledge in

' the synapses) " - - " " " ' N /

u(t) : Similarity between new information
and past knowledge

Fig. 5. A measure of similarity based on the projection
(inner product) of the augmented neural vector Xa(t) onto
the augmented synaptic weight vector W~(t). Note that if
angle o r = 0 ° in the vector space, then u(t) becomes a
maximum value (most similar). Conversely, if o~ = 90 °, then
the two vectors are orthogonal and the similarity measure is
u(t) = 0. Thus, if Xa(t) lies in the first or the fourth quadrant
with respect to W,(t), u(t) is an excitatory signal (positive),
whereas if Xa(t) lies in the second or the third quadrant , u(t)

is an inhibitory signal (negative).

~ ,~ (New neural informauon)

/ ' D : Distance between Xa(t) andWa(t)

Ix ~ Wa(t)

(Accumulated knowledge
in the synapses)

Fig. 6. Euclidean distancc measure of similarity between the
new neural information and the prcviously accumulated
synaptic knowledge. Note that if D = 0 then Xa(t) has a lot in
common with V£d(t), and u(t)= 1.0. Conversely, if D = 1

then Xa(t) and W~(t) have zcro similarity yielding u(t) = O.

8 M.M. Gupta, D.H. Rao / On the principles o f fuzzy neural networks

new neural information, Xa(t), and the accumu-
lated knowledge, Wa(t), is given by

D = fl~/[Wa(t) - Xa(t)]T[Wa(t) -- Xa(t)] E [~1 (8)

where 13 is a normalization constant such that
0 ~< D ~< 1. The measure of similarity between
Xa(t) and Wa(t) may then be defined as

u(t) -- [1 - D]. (9)

3.1.2. Somatic nonlinear activation function
The somatic nonlinear activation function,

lp[.] maps the confluence value u(t) e [-o% oo] to
a bounded neural output. In general, the neural
output is in the range of [0, 1] for unipolar
signals, and [- 1 , 1] for bipolar signals. The
nonlinear activation operator transforms the
signal u(t) into a bounded neural output y(t) ;
that is,

y(t) = ~p[u(t)] (10a)

= ~p[Wa(t)(~)Xa(t)] ~ • '. (10b)

Many different forms of mathematical functions
can be used to model the nonlinear activation
function, such as linear, hard limiter, unipolar
and bipolar sigmoidal, multimodal sigmoidal and
radial basis operators. Some typical activation
functions are given in Table 2. The most widely

used is the sigmoidal function given by

[e gx(t) -- e-gx~O]
~p[x] = [eSX(,) + e_g~(t)] - tanh[x(t)] (11)

where g is the parameter which controls the
slope of the sigmoidal function.

3. 2. Multi-layered neural networks

In the preceding subsection the mathematical
details of a single neuron were described.
Although a single neuron can perform certain
simple pattern detection functions, the power of
neural computation comes from the neurons
connected in a network structure. Larger
networks generally offer greater computational
capabilities. Arranging neurons in layers or
stages is supposed to mimic the layered structure
of a certain portion of the brain. These
multi-layered networks have been proven to
have capabilities beyond those of a single layer.
The most commonly used neural network
architecture in applications, such as pattern
recognition, system identification and control, is
the multi-layered neural network (MNN) with an
error back propagation (BP) algorithm. A
typical MNN comprises of an input layer, output
layer, and one hidden layer of neurons is shown

Table 2. Examples of typical nonlinear activation operators ~p[.]

Type Equat ion Functional form

~ t)]

(i) Linear ap[u(t)] = g u, ~,~

g > 0, activation gain 0 u(t)

~ ~[u(t)]

~p[u(t)] = if Igul < 1, ~-
if g u > - 1, , ~ 1 0 u(t)

g > O, activation gain

-1

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

Table 2. (continued)

Type Equation Functional form

(iii) Hard limiter ~p[u(t)l = sgnlul

, ~ [u (t)]

+1

0 u(t)

-1

(iv) Unipolar
sigmoidal

1
~p[u(t)l

1 + exp (-g u)

g > 0, activation gain

, ~[u(t)]
1 -

Y
2 _

0 u(t)

(v) Bipolar sigmoidal lPlu(t)] = tanhlg u(t)],

g > O, activation gain

d
+1

~U/[u(t)]

Y v
0 u(t)

-1

(vi) Unipolar multimode
sigmoidal

(vii) Radial basis
function (RBF)

(viii) Maximum

I | M i i
= - l + - - ~ t a n h (g (u - w o)) ~p[u(t)] 2[M i : ,]

gl > O, activation gain

~p[u(t) l = exp(u(t))

[- 2,'=,, (w , (t) - ~,(t)) ~] U(/)
L 2c? J

= ~ , i f x , (t) =), , ,Ax(x.(t)>,
lp[u(t)] [0 otherwise

n ~ [~; n = set of all possible winners

~[u(t)]

X

I
I I
I I

, 2 w0 ~ :~t) w 0 w 0

[Ug[u(t)]

o %(0

10 M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

X(t) ~ • ~ ~ ~ . . . ~ Y(t) G~ m

(t) ~ ~ Yl(t)
/

: ¥ X : XY.
Xn(t) ~ Ym (t)

Input Hidden Output
layer layer layer

Fig. 7a. A densely interconnected three layered static neural
network. Each shaded circle, or node, represents the neuron
shown in Figure 4. This neural network consists an input
layer (stage) with input vector, X(t)= [x~(t)
xi(t) x,(t)]TeR n, and the output layer with output
vector Y(t) = [yl(t) yi(t) y,,(t)] T c R m. Layers be-
tween the input and output layers are normally referred to as

hidden (intermediate) layers.

m
X(t) ~

Input layer I-lldd~n layer Output layer

Fig. 7b. A block diagram representation of a three layered
static neural network (MNN) with the input vector X(t) E R n

and output vector Y(t) ~ R n.

in Figure 7a. A simplified block diagram
representation of the MNN is given in Figure 7b.

The input-output mapping of the MNN shown
in Figure 7 can be mathematically represented
by

Y(t) = N3[N2[NI[X(t) ~ •"]]] e R m. (12)

In terms of the confluence and nonlinear
activation operators, (12) can be rewritten as

Y(t)

= ~p3[W3(t) O ~PZ[W](t) (~) Wl[W~(t) (~)Xa(t)]]]
(13)

where ~p/[.] is the nonlinear activation operator,
© is the confluence operator (scalar product or
distance measure), and WJa(t), W](t) and W3a(t)
are the augmented synaptic weight vectors for
the input, hidden and output layers,
respectively.

4. Fuzzy neural network architectures

4.1. Fuzzy logic: Basic introduction

The concept of graded membership in fuzzy
sets was introduced by Zadeh [14] in 1965. This
notion of graded membership was introduced in
order to provide a mathematical precision to
information arising from our cognitive process.
The theory of fuzzy sets provides a mechanism
for representing linguistic constructs such as
'many', 'low', 'medium', 'often', 'few'. In
general, the fuzzy logic provides an inference
structure that enables approximate human
reasoning capabilities [14-19]. On the contrary,
the traditional binary set theory describes crisp
events, events that either do or do not occur. It
uses probability theory to explain if an event will
occur, measuring the chance with which a given
event is expected to occur. The theory of fuzzy
logic is based upon the notion of relative graded
membership and so are the functions of
mentation and cognitive processes. Thus, the
utility of fuzzy sets lies in their ability to model
uncertain or ambiguous data so often encoun-
tered in real life.

Fuzzy set definition. Let X be a space of points
(or objects) with a generic element of X denoted
by x. X is often referred to as the universe of
discourse. A fuzzy set (class) A in X is
characterized by a membership (characteristic)
function IZA(t) which associates with each point
in X a real number in the interval [0, 1], with the
value of IZa(X) representing the 'grade of
membership' of x in A. Thus, the nearer the
value of #A(X) to unity, the higher the grade of
membership of x in A.

A fuzzy set A is a subset of the universe of
discourse X that admits partial membership. The
fuzzy set A is defined as an ordered pair

a ~--- {(X, UA(X)} (14)

where x e X and 0 ~ < ~A(X)<~ 1. The memership
function/~a(x) describes the degree to which the
object x belongs to the set A. I~A(X) is also
referred to as the characteristic function or
graded membership of x in A. If t t a (x)= 0 then
it is certain that x is not in A, and I~A(X) = 1 then
it is certain that x is in A. For x over
0 < Ira(X)< 1, there is an uncertainty associated

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks 11

with x, that is, x belongs to A with the possibility
~A(X).

4. 2. Fuz zy neural architectures

Neural network structures can deal with
imprecise data and ill-defined activities. How-
ever, the subjective phenomena such as reason-
ing and perceptions are often regarded beyond
the domain of conventional neural network
theory. It is interesting to note that fuzzy logic is
another powerful tool for modeling uncertainties
associated with human cognition, thinking and
perception. In fact, the neural network approach
fuses well with fuzzy logic [1, 4-6] and some
research endeavors have given birth to the field
of 'fuzzy neural networks' or 'fuzzy neural
systems'. Padadigms based upon this integration
are believed to have considerable potential in
the areas of expert systems, medical diagnosis,
control systems, pattern recognition and system
modeling. Two possible models of fuzzy neural
systems are schematically shown in Figures 8(a)
and (8)b).

The computational process envisioned for
fuzzy-neural systems is as follows. It starts with
the development of a 'fuzzy neuron' based on

the understanding of biological neuronal mor-
phologies, followed by learning mechanisms.
This leads to the following three steps in a
fuzzy-neural computational process:

(i) development of fuzzy neural models
motivated by biological neurons,

(ii) models of synaptic connections which
incorporates 'fuzziness' into neural network, and

(iii) development of learning algorithms (that
is, the method of adjusting the synaptic weights).

Based upon the computational process in-
volved in a fuzzy-neural system, one may
broadly classify the fuzzy neural structures as
feedforward (static) and feedback (dynamic),
Figure 9.

In a feedforward (static) architecture, the
neuron responds instantaneously to the fuzzy
inputs because of the absence of dynamic
elements in the structure. The neural mathe-
matical operations in a feedforward network can
be performed either by fuzzy arithmetic or fuzzy
logic operations. As was mentioned in the
preceding section, the function of a non-fuzzy
neuron can be modeled as

y(t) = ~p w,x, (15)
L i = 0

L i n g u i s t i c ~

Statements L ~

Fuzzy

Interface

Perception as /
neural inputs ~ ~ . ~ i

Neural ons

Network / [(Neural

Learning
algorithm

Neural ~ . . . ~ Neural

Network

/

CKn°wledge'base~

Neural outputs ~ Fuzzy s
Inference

algorithm

Fig. 8. Two models of fuzzy neural systems. (a) In response to linguistic statements, the 'fuzzy interface' block provides an input
vector, to a multi-layered neural network. The neural network can be adapted (trained) to yield desired command outputs or

decisions. (b) In this scheme, a multi-layered neural network drives the fuzzy inference mechanism.

12 M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

Fuzzy - Neural Architectures

F e e d f o r w a r d

(Static)

I

Fuzzy Logic
operations

Fec, dback

(Dynamic)

I

Fuzzy Arithmetic Fuzzy Inference
operations mechanism

Dynamic Neuron
with fuzzy inputs

Fig. 9. Classification of fuzzy-neural systems.

where]x~ x.] represent neural inputs
[Wm,..., w,] the synaptic weights, y(t) the
neural output and ~0[.] is some nonlinear
activation function. From (15) it may be
observed that the mathematical operations
involved in a computational neuron are:

(i) the scalar product between the neural
inputs and the synaptic weights, and

(ii) the summation of these products.
The scalar product in (15) can be replaced by

fuzzy multiplication and the summation opera-
tion by fuzzy addition. Detailed descriptions of
fuzzy arithmetic operations may be found in [3].
These modifications lead to a fuzzy neural
architecture based on fuzzy arithmetic opera-
tions. The function of such a fuzzy neuron can
be modeled by the following equation:

y(t)= lp[!~=) wi(.)xi] (16)

where (+) and (-) are fuzzy addition and fuzzy
multiplication operators respectively.

Alternatively, fuzzy logic operations, such as
oR, ANO, SOT, or their generalized versions can
be introduced in (15). In this paper, we confine
our discussion to a neural architecture based
upon fuzzy logic operations.

The other classification, as shown in Figure 9,
is the feedback (dynamic) architecture. The
dynamic networks not only provide some robust
computing characteristics but also bring about
greater insights into biological neural structures.
The dynamics in fuzzy neural computing does
provide some functional basis of the cerebellum
and its associated circuitry, and can offer great
computational advantages over purely feedfor-

ward architectures. Based on fuzzy inference
mechanism, Gupta and Knopf [20] proposed a
dynamic fuzzy-neural architecture and developed
a Fuzzy Expert Navigator (FEN) for an
autonomous vehicle.

4. 3. Fuzzy-neural architecture based on fuzzy
logic operations [1]

If we express the neural input signals in terms
of their membership functions each over the
interval [0, 1], rather than in their absolute
amplitudes, then we can write the augmented
vector of neural inputs as

X a (t) = [x0(t), X l (t) , • • • ,

Xi(t) xn(t)]TE [0, 1] "+l (17)

where these neural signal (including the bias
term, x0) are bounded by the (n + 1) dimen-
sional hypercube [0, 1] n÷l. Similarly, the aug-
mented synaptic weighting vector Wa(t) can be
expressed over the unit hypercube [0, 1] n÷l.

We perform mathematical operations on these
signals using logical operations (connectives)
[21, 22] such as oR, AND (or their generalized
form based upon triangular norm of T-
operators) and negation.

Let us express the inputs xl and x2 over [0, 1].
Then we define the generalized ANn (T-
operation) as a T mapping function:

T:[O, 11 × [0, 1l--> [0, 1]

given by

y, = [xl AND XZ] & [Xl T X2] = T[xl, x2]. (18)

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks 13

Similarly, we define the generalized oR, (T-
conorm) as a S mapping function

S:[0, 1] × [0, 1] ~ [0, 1]

given by

Y2 = [x~ oR x2] & [xl Sx2] = Six,, x2]. (19)

Negation N on x~ e [0, 1] is defined as a mapping

N:[0, [0, 11
with the following properties

Y3 = N[Xl] = 1 --x,. (20)

Thus, N(0)= 1, N(1)= 0, and N(N(x))=x.
Now, we describe some important properties

of the T and S operators:

T(0, 0) = 0, T(1, 1) -- 1,
(21a)

T(1, x) = x, T(x, y) = T(y, x),

S(0, 0) = 0, S(1, 1) = 1,
(21b)

S(0, x) = x, S(x, y) = S(y, x).

Also, De Morgan's Theorems are stated as
follows:

T(xl, x2) = 1 -- S (1 - x l , l - x 2) ,

and

S(x~, x2) = 1 - T(1-x~ , l - x 2) . (22)

In the development of fuzzy logic based neural
morphology, we will use the following combined
synaptic and somatic operations: Let the
augmented vector of neural inputs and synaptic
weights be represented by

X~(t) •[0, 1] n+l, and W,(t)• [0, 1] ~+t

respectively. Then, in (6), by replacing the
©-operation by the T-operation, and the
Z-operation by the S-operation, we get

u(t) = S [wi(t) tx,(t)] c [0, 1], (23a)
i 0

and

y(t) = ~p[u(/) 6 [0, 1] (23b)

where ~p[.] is a nonlinear mapping function.

4. 3.1. Unipolar to bipolar transformation [1]
The logical operations defined in the preced-

ing section are unipolar signals over the positive
unit interval [0,1]. Such logical operations

provide only the neural state corresponding to
the excitatory (positive) interactions. In order to
account for both the excitatory (positive) and the
inhibitory (negative) interactions, of the neural
input vector, we must consider both X~(t) and its
negated values N[Xa(t)], thus making the neural
inputs of dimensions (2n + 2).

Alternatively, we may express the neural
inputs and synaptic weights as bipolar signals
and weights over the interval [-1 ,1] and
redefine the logical operations over this interval.
We will provide a brief description of this
transformation for unipolar [0, 1], to bipolar
[-1,1] , and of the definition of logical
operations over the interval [-1 , 1].

Let x(t)e[0, 1] be a unipolar signal. The
corresponding bipolar signal z(t) is defined as

z(t) = 2x(t) - 1. (24)

The negation is defined as

N[x] = 1 -x (t) , for unipolar signals,

and

N[z] = -z(t) , for bipolar signals.

The T and S operations defined in the interval
[0, 1] can be transformed to the interval [-1 , 1]
using (24).

In Table 3, we give a summary of logical T
and S operations for both unipolar and bipolar
signals. We define in Table 4 some important
logical functions and operations such as Godel's
implication, degree of equality using Godel's
implication, degree of equality using
Lukasiewicz conjunction, and degree of error
(inequality) for two bipolar signals z~ and
z2 ~ [- 1 , 11.

5. Learning scheme: Adapting the knowledge
base

The weighting and spatio-temporal aggrega-
tion operations performed by the synapses and
soma, respectively, provide a similarity measure
between the input vector Xa(t) (new neural
information) and the synaptic weight vector
W,(t) (accumulated knowledge base). When a
new input pattern that is significantly different
from the previously learned patterns is presented
to the neural network, the similarity between

14 M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

Table 3. Summary of logical operations on unipolar and bipolar signals

Unipolar signals
x(t) ~ [0, 1]

(i) Bipolar to unipolar transformation

x(t) = "(z(t) + I)

(ii) Ncgation:
NIx(t)l =x(t) = 1 - x(t)

(iii) Boundary conditions
(a) T-Operator (generalized AND)

T(0,0)=0; T (1 , 1) = I
T(1, x) = x; T(xl, x2) = T(x2, xj)

(b) S-operator (generalized oR)
s(0, 0) = 0; s o , 1) = 1
S(0,x) = x ; S(x j ,x2)=S(x2 , xO

(iv) Generalized De Morgan's Theorem
T(xl, x :)= 1 -S(1 --Xl, 1 --X2)
S(xl, x2) = 1 -T (1 - x l , 1 -x2)

Bipolar signals
z(t) E [--1, 1]

(i) Un ipo la r to b ipo lar t ransformat ion
z (t) = 2x(t) - l

(ii) Negation.'
N[z(t)] = z(t) = - z(t)

(iii) Boundary Conditions
(a) T-operator (generalized AND)

T (- 1 , - 1) = - I ; T (1 , 1) = I
T(1, z) = z; T(zl, z2) = T(z2, zl)

(b) S-operator (generalized oR)
S (- l , 1) = - l ; S (1 ,1)=I
S (- 1 , z) = z ; S(z~,z2)=S(z2, z~)

(iv) Generalized De Morgan's Theorem
T(z,, z2) = - S (- z , , -z2)
S(zt, z2) = - T (- z , , -z2)

Table 4. Summary of some important logical functions and operations (these logical functions and operations can be
defined on both the unipolar, [0, 1] and bipolar [-1, 1], signals, but here, we will consider the bipolar signals)

(a) Godel's implication (~): Godel's implication [z, (~z2] (read as, z, implies zz) is defined as

2, Z l ~ Z 2 ,

(b) Degree of equality (using Godel's implication) r/(zl, z2). Given z I and z 2 over [-1, 1], to what degree they are equal is
defined as

r/(z,, z2) = ½[{z, (~)z2}Tiz2 {~)z,} + {-~t (~)£2T{z72 (~)£,}] ~ [-1, 1]

where £ = -z .

(c) Degree of equality (using Lukasiewicz's conjunction): ~l(z~, z2). Again, given zl and z~ over [-1 , 1], to what degree
they are equal is defined as

rl(z,, z2) = 11 -Iz,z21l e [-1 , 11.

(d) Degree of inequality (degree of error): E(Zl, z2) e [-1, 1]. Given zl and z2 over [-1, 1], in order to find the degree of
difference or degree of inequality, we define E[z,, z2] as the negation on the degree of equality; that is,

e lz , , z~] = Nln(z, , z~)] = - , K z , , z2).

Thus, the degree of error, using Lukasiewicz conjunction can be defined as

E(z,, z2) = Iz, - z21 - 1.

this input and the existing knowledge base is
small. As the neural network learns this new
pattern, by changing the strength of the synaptic
weights, the distance between the new informa-
tion and accumulated knowledge decreases. In
other words, the purpose of learning is to make
W~(t) very similar to a given pattern Xa(t).

Most of the neural network structures undergo

a 'learning' procedure during which the synaptic
weights (connection strengths) are adapted.
Algorithms for varying these connection stren-
gths such that learning ensues are called
'learning rules'. The objective of learning rules
depends upon the applications. For example, the
objective in pattern classification from sample
data is to classify and predict successfully on new

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks 15

Neural Learning Algorithms

I

Error-based learning

Error-correction Stochastic

Least-mean Back propagation
square

Output-based learning

Hebbian Competitive

Fig. 10. A flow diagram of learning algorithms employed in different neural structures to adapt the synaptic weights.

data, while the objective in control applications
is to approximate nonlinear functions, and/or to
make unknown systems follow the desired
response. In classification and functional ap-
proximation problems, each cycle of presenta-
tion of all cases is usually referred to as a
'learning epoch'. However, there has been no
generalization as to how a neural network can be
adapted. A flow diagram illustrating the different
learning algorithms normally employed for the
adaptation of synaptic weights is shown in Figure
10. As shown in this figure, learning algorithms
may be broadly categorized as 'error-based
(supervised)' and 'output-based (unsupervised)'.

Error-based (also known as supervised)
learning algorithms employ an external reference
signal (teacher) and generate an error signal by
comparing the reference with the obtained
response. Based on error signal, neural network
modifies its synaptic connections to improve the
system performance. In this learning scheme, it
is assumed that the desired answer is known
apriori. The error-based learning procedure is
schematically shown in Figure 11.

A general equation for the error-based
learning algorithm is

wi(t + 1) = wi(t) + Awi(t) (25a)

where

A w i (t) = lZiXi(t)[yd(t) -- y(/)] (25b)

and wi(t) is the synaptic weight corresponding to
the input xi(t). The parameter Awe(t) is the
change in synaptic connection wi(t) over an
instant in time,/~,- is the learning rate, ya(t) is the

Adaptive weights AWa(t) Desired output
Yd (t)

Xa(t) e ~n+l . +

Neural

Fig. 11. An error-based (supervised) learning scheme where
the learning process is guided by the error signal e(t).

desired neural output, and y(t) is the actual
neural response. The proper selection of/u is of
critical importance in these learning rules. A
very small value of /~i will result in extremely
slow learning. On the other hand, a large value
of/~i will make learning faster, but it may also
result in oscillations or make the system
unstable.

In contrast, output-based learning algorithms
do not incorporate a reference signal, and
generally involve self-organization principles that
rely only upon local information and internal
control mechanisms in order to discover
emergent collective properties. The two most
important forms of output-based learning are
Hebbian learning and competitive learning.
Hebbian learning [23, 24], Figure 12, involves
the adjustment of a synaptic weight according to
the correlation of the response of the two
neurons that adjoin it. A simple Hebbian
learning rule used to describe the correlation of

16 M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

,(t) • ~ 1

Neural
output

Adaptive weigMs
AWa(t) = I~ X a(t) y(t)

/

Xa(t)e ~ I - I ~ _ . z..]u(t)l~l [" ~ .

¢ -

Fig. 12. An output-based (unsupervised) learning scheme,
often called Hebbian learning, is guided by the neural output
rather than by the output error as in error-based (supervised)

learning scheme.

the input xi(t) with the neuron output y(t) is

AWl(t) = I~i xi(l) y(t) (26)

where Aw/(t) represents the temporal change of
the synaptic weight wi(t) and /u; is the learning
rate.

We can extend these basic learning rules to a
fuzzy neuron. Figure 13 shows an error-based
learning scheme for a fuzzy neuron with bipolar
signals and synaptic weights. The augmented
neural input signals Xa(t) are defined over the

unit hypercube [0, 1] n+l. Using the transforma-
tion given in (24), we transform the unipolar
neural inputs Xa(t) into bipolar signals Za(t)
[--1, 1] n+t.

The logical operation of this neuron is
summarized as follows:

u(t) = S [wi(t) T zi(t)] (27a)
i = 0

which is equivalent to

u(t) = WVa(t) ANa Z,(t) ~ [-1, 1] (27b)

(a logical scalar product operation), where wo(t)
and zo(t) correspond to the bias terms and zo = 1.
The neural output is defined as

y(t) = qp[u(t)] ~ [-1, 1] (2ga)

where ~p[.] is defined as

~p[u(t)] = lu(t)[8- sgn[u(t)], g > 0 (28b)

where the parameter g is the somatic gain which
controls the slope of the activation (sigmoidal)
function. Let us define an error signal with
respect to the desired neural output, yd(t)~ [--
1, 1], as e (t) = y d (t) - y (t) e [--1, 1]. The objec-
tive of learning and adaptation in neural
networks is to adapt the parameters of the
neural structures, in this case Wa(t) and g in
(21a) and (21b), in order to minimize an error
function. The learning rules to modify Wa(t) and

z,t, I

I *x_o 0 \ I
lipolar (

I ' - - J

z (o . - .

¢ L ~ e(t)e l-l,11

Wa (t+l) ~ A Wa(t) .~, ~ _ = . ~ A g(t)

_ ~ Wa(t) g(t+l) _ ~ ~ g(t)

'~% Learning scheme with
fuzzy connectives

Fig. 13. Implementation of the learning scheme, Equations (29) and (30), to modify the synaptic weights, H~ d, and the somatic
gain, g, of a fuzzy neuron.

M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks 17

g(t) may be developed as follows:

Wa(t + 1) = Wa(t) Og AWa(t) = S[W~(t), AWa(t)],

(29a)

and

g(t + 1) =g(l) oR Ag(l) = S[g(t), 6g(t)] (29b)

where

AWa(I) = Za(/) A N D e(t) = T[Za(/), e(l)], (30a)

and

Ag(t) = u(t) ANn e(t) = T[u(l), e(l)]. (30b)

The above description provides a learning
scheme to update the neural weights of a fuzzy
neuron. It represents one particular model of a
fuzzy neural architecture. It is postulated that
the fuzzy neural networks can learn by
experience if their synaptic connections are
interpreted as fuzzy relations between the
external inputs and the dendritic inputs.
Complex decisions may be derived from a
shallow hierarchy of fuzzy neurons and their
related network architectures with electronic
circuitry.

these neuronal operations, we developed the
learning algorithms as discussed in Section 5 for
both error-based and output-based learning.
With the development of fuzzy neural networks,
it is envisaged that learning schemes for
autonomous vehicles will have the following
features:

(i) easy to implement fuzzy natural lan-
guages so that the structure of knowledge is very
clear and efficient,

(ii) any changes in the task and environment
can be easily taken care of by adapting the
neural weights, and

(iii) since a fuzzy system is one kind of
interpolation [25], drastic reduction of data and
software/hardware overheads can be achieved.

However, it should be noted that more
research endeavors are necessary to develop
general topology of fuzzy neural models,
learning algorithms, and approximation theory
so that these models are made applicable in
system modeling and control of complex
systems. The area of fuzzy neural networks is
still in its infancy, and is a very fertile area of
theoretical and applied research.

References

6. Conclusions

This paper is a tutorial presentation on the
principles of biological and conventional neuro-
nal morphologies. Biology does provide a
motivation and framework for the development
of computational neural structures. Biological
neuronal principles can be extended to generate
several neural topologies and algorithms for both
non-fuzzy and fuzzy situations. In this paper, we
have emphasized the basic principles rather than
giving some advanced structures of neural
networks which are available in the literature.

Our emphasis in this paper, both from
mathematical structure and information process-
ing point of view, has been on the operations
such as confluence and nonlinear activation. The
confluence operation provides a measure of
similarity between the neural inputs and
accumulated stored experience in synaptic
weights, and the activation function provides a
graded output to similarity measure. Based upon

[1] M.M. Gupta, Fuzzy logic and neural networks, Tenth
Int. Conf. on Multicriterion Decision Making, Taipei,
July 19-24, 1992, 281-294.

[2] L.A. Zadeh, Outline of a new approach to the analysis
of complex systems and decision process, IEEE Trans.
Systems, Man and Cybernetics 3(1) (1973) 28-44.

[3] A. Kaufmann and M.M. Gupta, Introduction to Fuzzy
Arithmetic: Theory and Applications, 2nd edition (Van
Nostrand Reinhold, New York, 1991).

[4] M.E. Cohen and D.L. Hudson, An expert system on
neural network techniques, in: I.B. Turksen, Ed., The
Proceedings of NA FIP, Toronto, June 1990, 117-12.

[5] M.M. Gupta and G.K. Knopf, Fuzzy neural network
approach to control systems, Proc. of First Int. Syrup.
on Uncertainty Modeling and Analysis, Maryland, Dec.
3-5, 1990, 483-488.

16] T. Yamakawa and S. Tomoda, A fuzzy neuron and its
application to pattern recognition, Proc. of the Third
IFSA Congress, Seattle, Aug. 1989, 30-38.

[7] D.C. Kuncicky and A. Kandel, A fuzzy interpretation
of neural networks, in: J.C. Bezdek, Ed., The
Proceedings of the Third IFSA Congress, Seattle, 1989,
113-116.

[8] J.B. Kiszka and M.M. Gupta, Fuzzy logic neural
network, BUSEFAL 4 (1990) 104-109.

[9] S. Nakanishi, T. Takagi, K. Uehara and Y. Gotoh,

18 M.M. Gupta, D.H. Rao / On the principles of fuzzy neural networks

Self-organizing fuzzy controllers by neural networks,
Int. Conf. on Fuzzy Logic and Neural Networks,
IIZUKA '90, Japan 1990, 187-192.

[10[I. Hayashi, H. Nomura and N. Wakami, Artificial
neural network driven fuzzy control and its application
to learning of inverted pendulum system, in: J.C.
Bezdek, Ed., Proc. of the Third IFSA Congress,
Seattle, 1989, 610-613.

[11] J.C. Bezdek, Pattern Recognition with Fuzzy Objective
Function Algorithms (Plenum Press, NY, 1991).

[12] M.M. Gupta and J. Qi, On fuzzy neuron models, Int.
Joint Conf. on Neural networks (IJCNN), Seattle, July
1991, 431-456.

[13] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H.
Reynolds and D.B. Rosen, Fuzzy ARTMAP: A neural
network architecture for incremental supervised learn-
ing of analog multidimensional maps, IEEE Trans. on
Neural Networks, 3(5) (Sept. 1992) 698-713.

[14] L.A. Zadeh, Fuzzy Sets, Information and Control 8
(1%5) 338-353.

[15] P.K. Simpson, Fuzzy min-max neural networks-Part
I: Classification, IEEE Trans. on Neural Networks 3(5)
(Sept. 1992) 776-786.

[16] M.M. Gupta, Uncertainty and information: The
emerging paradigms, Int. J. of Neuro and Mass-Parallel
Computing and Information Systems 2 (1991) 65-70.

[17] S.K. Pal and S. Mitra, Multilayer perceptron, fuzzy

sets, and classification, IEEE Trans. on Neural
Networks 3(5) (Sept. 1992) 683-697.

[18] M.M. Gupta, Fuzzy neural computing systems, 2nd Int.
Conf. on Fuzzy Logic and Neural Networks, July
17-22, Japan, 1992.

[19] H.-J. Zimmermann, Fuzzy Set Theory and Its
Applications (Dordrecht, Kluwer Academic Press,
1991).

[20] M.M. Gupta and G.K. Knopf, Dynamic neural network
for fuzzy inference, SP1E's Conf. on Applications of
Fuzzy Logic Technology, Boston, Sept 7-10, 1993.

[21] M.M. Gupta and J. Qi, Connections (AND, OR, NOT)
and T-operators in fuzzy reasoning, in: I.R. Goodman,
M.M. Gupta, H.T. Nguyen and G.S. Rodgers (Eds.),
Conditional Logic in Expert Systems, (North-Holland,
Amsterdam, 1991) 211-233.

[22] M.M. Gupta and J. Oi, Design of fuzzy logic controllers
based on generalized T-operators, Fuzzy Sets and
Systems 40(3) (1991) 473-489.

[23] D.O. Hebb, The Organization of Behavior (John Wiley
and Sons, New York, 1949).

[24] D. Hammerstrom, Working with neural networks,
IEEE Spectrum July 1993, 46-53.

[25] T. Yamakawa, A fuzzy inference engine in nonlinear
analog mode and its application to a fuzzy logic control,
IEEE Trans. on Neural Networks 4(3) (May 1993)
496--522.

